Far-field optical imaging of surface plasmons with a subdiffraction limited separation

被引:0
|
作者
Xiang, Yifeng [2 ]
Chen, Junxue [3 ]
Tang, Xi [1 ]
Wang, Ruxue [4 ]
Zhan, Qiwen [5 ,6 ]
Lakowicz, Joseph R. [7 ]
Zhang, Douguo [1 ]
机构
[1] Univ Sci & Technol China, Inst Photon, Dept Opt & Opt Engn, Hefei 230026, Anhui, Peoples R China
[2] Fujian Normal Univ, Key Lab OptoElect Sci & Technol Med, Minist Educ, Coll Photon & Elect Engn,Fujian Prov Key Lab Phot, Fuzhou 350117, Peoples R China
[3] Guilin Univ Technol, Coll Sci, Guilin 541004, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[5] Univ Dayton, Dept Electroopt & Photon, 300 Coll Pk, Dayton, OH 45469 USA
[6] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[7] Univ Maryland, Sch Med, Ctr Fluorescence Spect, Dept Biochem & Mol Biol, 725 West Lombard St, Baltimore, MD 21201 USA
关键词
diffraction limit; leakage radiation microscopy; photonic band gap; silver nanowire; surface plasmon; PROPAGATION;
D O I
10.1515/nanoph-2020-0500
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
When an ultrathin silver nanowire with a diameter less than 100 nm is placed on a photonic band gap structure, surface plasmons can be excited and propagate along two side-walls of the silver nanowire. Although the diameter of the silver nanowire is far below the diffraction limit, two bright lines can be clearly observed at the image plane by a standard wide-field optical microscope. Simulations suggest that the two bright lines in the far-field are caused by the unique phase distribution of plasmons on the two side-walls of the silver nanowire. Combining with the sensing ability of surface plasmons to its environment, the configuration reported in this work is capable of functioning as a sensing platform to monitor environmental changes in the near-field region of this ultrathin nanowire.
引用
收藏
页码:1099 / 1106
页数:8
相关论文
共 50 条
  • [41] Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies
    Zhang, Tian
    Chen, Lin
    Li, Xun
    [J]. OPTICS EXPRESS, 2013, 21 (18): : 20888 - 20899
  • [42] Far-field optical hyperlens magnifying sub-diffraction-limited objects
    Liu, Zhaowei
    Lee, Hyesog
    Xiong, Yi
    Sun, Cheng
    Zhang, Xiang
    [J]. SCIENCE, 2007, 315 (5819) : 1686 - 1686
  • [43] Far-Field Excitation of Acoustic Graphene Plasmons with a Metamaterial Absorber
    Wen, Chunchao
    Chen, Xingqiao
    Zhang, Jianfa
    Xu, Wei
    Luo, Jie
    Zhou, Yingqiu
    Zhu, Zhihong
    Qin, Shiqiao
    Yuan, Xiaodong
    [J]. ADVANCED PHOTONICS RESEARCH, 2021, 2 (02):
  • [44] Optical Gain Assisted Far-Field Sub-Wavelength Imaging
    Deaver, Joshua S.
    Yang, Weiguo
    Schenk, John O.
    Fiddy, Michael A.
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [45] Far-field optical imaging and manipulation of individual spins with nanoscale resolution
    P. C. Maurer
    J. R. Maze
    P. L. Stanwix
    L. Jiang
    A. V. Gorshkov
    A. A. Zibrov
    B. Harke
    J. S. Hodges
    A. S. Zibrov
    A. Yacoby
    D. Twitchen
    S. W. Hell
    R. L. Walsworth
    M. D. Lukin
    [J]. Nature Physics, 2010, 6 : 912 - 918
  • [46] Far-field optical imaging and manipulation of individual spins with nanoscale resolution
    Maurer, P. C.
    Maze, J. R.
    Stanwix, P. L.
    Jiang, L.
    Gorshkov, A. V.
    Zibrov, A. A.
    Harke, B.
    Hodges, J. S.
    Zibrov, A. S.
    Yacoby, A.
    Twitchen, D.
    Hell, S. W.
    Walsworth, R. L.
    Lukin, M. D.
    [J]. NATURE PHYSICS, 2010, 6 (11) : 912 - 918
  • [47] Theory of optical imaging beyond the diffraction limit with a far-field superlens
    Durant, Stephane
    Liu, Zhaowei
    Fang, Nicholas
    Zhang, Xiang
    [J]. PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES IV, 2006, 6323
  • [48] Strategy for far-field optical imaging and writing without diffraction limit
    Hell, SW
    [J]. PHYSICS LETTERS A, 2004, 326 (1-2) : 140 - 145
  • [49] Far-field pseudothermal correlation imaging
    Yu, Hui
    Du, Weichao
    Wang, Bo
    Wang, Chensheng
    Zhang, Zhi-jie
    [J]. AOPC 2019: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2019, 11338
  • [50] Far-Field and Near-Field Investigation of Longitudinal Plasmons of AgAuAg Nanorods
    Kim, Deok-Soo
    Ahn, Sung-Hyun
    Kim, Jinwook
    Seo, Daeha
    Song, Hyunjoon
    Kim, Zee Hwan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (37): : 21082 - 21090