Far-field optical imaging of surface plasmons with a subdiffraction limited separation

被引:0
|
作者
Xiang, Yifeng [2 ]
Chen, Junxue [3 ]
Tang, Xi [1 ]
Wang, Ruxue [4 ]
Zhan, Qiwen [5 ,6 ]
Lakowicz, Joseph R. [7 ]
Zhang, Douguo [1 ]
机构
[1] Univ Sci & Technol China, Inst Photon, Dept Opt & Opt Engn, Hefei 230026, Anhui, Peoples R China
[2] Fujian Normal Univ, Key Lab OptoElect Sci & Technol Med, Minist Educ, Coll Photon & Elect Engn,Fujian Prov Key Lab Phot, Fuzhou 350117, Peoples R China
[3] Guilin Univ Technol, Coll Sci, Guilin 541004, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[5] Univ Dayton, Dept Electroopt & Photon, 300 Coll Pk, Dayton, OH 45469 USA
[6] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[7] Univ Maryland, Sch Med, Ctr Fluorescence Spect, Dept Biochem & Mol Biol, 725 West Lombard St, Baltimore, MD 21201 USA
关键词
diffraction limit; leakage radiation microscopy; photonic band gap; silver nanowire; surface plasmon; PROPAGATION;
D O I
10.1515/nanoph-2020-0500
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
When an ultrathin silver nanowire with a diameter less than 100 nm is placed on a photonic band gap structure, surface plasmons can be excited and propagate along two side-walls of the silver nanowire. Although the diameter of the silver nanowire is far below the diffraction limit, two bright lines can be clearly observed at the image plane by a standard wide-field optical microscope. Simulations suggest that the two bright lines in the far-field are caused by the unique phase distribution of plasmons on the two side-walls of the silver nanowire. Combining with the sensing ability of surface plasmons to its environment, the configuration reported in this work is capable of functioning as a sensing platform to monitor environmental changes in the near-field region of this ultrathin nanowire.
引用
收藏
页码:1099 / 1106
页数:8
相关论文
共 50 条
  • [31] Far-field Optical Nanoscopy
    Hell, Stefan W.
    [J]. 2010 23RD ANNUAL MEETING OF THE IEEE PHOTONICS SOCIETY, 2010, : 3 - 4
  • [32] FAR-FIELD OPTICAL NANOSCOPY
    Hell, Stefan W.
    [J]. 2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1 AND 2, 2009, : 105 - 105
  • [33] Far-field imaging of the electromagnetic local density of optical states
    Huang, C.
    Bouhelier, A.
    des Francs, G. Colas
    Legay, G.
    Weeber, J. -C.
    Dereux, A.
    [J]. OPTICS LETTERS, 2008, 33 (04) : 300 - 302
  • [34] Optical hyperlens: Far-field imaging beyond the diffraction limit
    Jacob, Zubin
    Alekseyev, Leonid
    Narimanov, Evgenii
    [J]. PHOTONIC METAMATERIALS, 2007, 6638
  • [35] Far-field optical superlens
    Liu, Zhaowei
    Durant, Stephane
    Lee, Hyesog
    Pikus, Yuri
    Fang, Nicolas
    Xiong, Yi
    Sun, Cheng
    Zhang, Xiang
    [J]. NANO LETTERS, 2007, 7 (02) : 403 - 408
  • [36] Far-Field Optical Nanoscopy
    Hell, Stefan W.
    [J]. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY, 2010, 96 : 365 - 398
  • [37] Optical hyperlens: Far-field imaging beyond the diffraction limit
    Jacob, Zubin
    Alekseyev, Leonid V.
    Narimanov, Evgenii
    [J]. OPTICS EXPRESS, 2006, 14 (18): : 8247 - 8256
  • [38] Far-field optical nanoscopy
    Hell, Stefan W.
    [J]. SCIENCE, 2007, 316 (5828) : 1153 - 1158
  • [39] Far-field optical nanoscopy
    Hell, Stefan W.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [40] Probing surface plasmon fields by far-field Raman imaging
    Laurent, G.
    Felidj, N.
    Grand, J.
    Aubard, J.
    Levi, G.
    Hohenau, A.
    Krenn, J. R.
    Aussenegg, F. R.
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 2008, 229 (02): : 189 - 196