A Calderon Multiplicative Preconditioner for the Combined Field Integral Equation

被引:50
|
作者
Bagci, Hakan [1 ]
Andriulli, Francesco P. [2 ]
Cools, Kristof [3 ]
Olyslager, Femke [3 ]
Michielssen, Eric [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Politecn Torino, Dept Elect, I-10129 Turin, Italy
[3] Univ Ghent, Dept Informat Technol, Electromagnet Grp, B-9000 Ghent, Belgium
关键词
Combined field integral equation (CFIE); electric field integral equation (EFIE); magnetic field integral equation (MFIE); preconditioning; surface integral equations; ELECTROMAGNETIC SCATTERING; ALGORITHM; COMPLEX;
D O I
10.1109/TAP.2009.2029389
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Calderon multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caideron-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation.
引用
收藏
页码:3387 / 3392
页数:6
相关论文
共 50 条
  • [31] An iterative solution of the combined field integral equation
    Obelleiro, F
    Rodriguez, JL
    Pino, AG
    [J]. ANNALS OF TELECOMMUNICATIONS, 1998, 53 (3-4) : 85 - 94
  • [32] COMBINED-FIELD INTEGRAL-EQUATION
    HELALY, A
    FAHMY, HM
    [J]. ELECTRONICS LETTERS, 1993, 29 (19) : 1678 - 1679
  • [33] A Calderon multiplicative preconditioner for the electromagnetic Poincare-Steklov operator of a heterogeneous domain with scattering applications
    Dobbelaere, D.
    De Zutter, D.
    Van Hese, J.
    Sercu, J.
    Boonen, T.
    Rogier, H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 355 - 371
  • [34] Calderon Strategies for the Convolution Quadrature Time-Domain Electric Field Integral Equation
    Cordel, Pierrick
    Dely, Alexandre
    Merlini, Adrien
    Andriulli, Francesco P.
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 379 - 388
  • [35] Contamination of the Accuracy of the Combined-Field Integral Equation With the Discretization Error of the Magnetic-Field Integral Equation
    Gurel, Levent
    Ergul, Ozguer
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (09) : 2650 - 2657
  • [36] EFIE Analysis of Low-Frequency Problems With Loop-Star Decomposition and Calderon Multiplicative Preconditioner
    Yan, Su
    Jin, Jian-Ming
    Nie, Zaiping
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (03) : 857 - 867
  • [37] A coercive combined field integral equation for electromagnetic scattering
    Buffa, A
    Hiptmair, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 621 - 640
  • [38] A Preconditioner for Surface Integral Equation Formulations of Dielectric Problems
    Zhang Jun
    Que Xiaofeng
    Nie Zaiping
    [J]. 2013 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2013, : 140 - 143
  • [39] Symmetric near-field Schur's complement preconditioner for hierarchal electric field integral equation solver
    Negi, Yoginder Kumar
    Balakrishnan, Narayanaswamy
    Rao, Sadasiva M.
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2020, 14 (14) : 1846 - 1856
  • [40] Calderon stabilized time domain integral equation solvers
    Andriulli, Francesco P.
    Cools, Kristof
    Olyslagerz, Femke
    Michielssen, Eric
    [J]. 2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 4145 - +