A Calderon multiplicative preconditioner for the electromagnetic Poincare-Steklov operator of a heterogeneous domain with scattering applications

被引:12
|
作者
Dobbelaere, D. [1 ]
De Zutter, D. [1 ]
Van Hese, J. [2 ]
Sercu, J. [2 ]
Boonen, T. [2 ]
Rogier, H. [1 ]
机构
[1] Univ Ghent, Dept Informat Technol, Electromagnet Grp, B-9000 Ghent, Belgium
[2] Keysight Technol Belgium NV, B-9051 Sint Denijs Westrem, Belgium
关键词
Poincare-Steklov operator; Heterogeneous domain; Calderon preconditioner; Schur complement discretization; Preconditioned hybrid formulation; Electromagnetic scattering; FIELD INTEGRAL-EQUATION; FE-BI-MLFMA; DECOMPOSITION; ALGORITHM; EFIE; FORMULATIONS; ACCURATE; ELEMENTS; MFIE;
D O I
10.1016/j.jcp.2015.09.052
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the context of hybrid formulations, the Poincare-Steklov operator acting on traces of solutions to the vector Helmholtz equation in a heterogeneous interior domain with a smooth boundary is regularized by a well-known boundary integral operator related to the homogeneous exterior domain. For the first time, this property allows us to simultaneously construct a Calderon multiplicative preconditioner for the discretized operator and for a 3-D hybrid finite/boundary element method formulation, applicable to electromagnetic scattering problems. Numerical examples demonstrate the effectiveness of this novel preconditioning scheme, even for heterogeneous domains with non-smooth boundaries. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 371
页数:17
相关论文
共 29 条