Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems

被引:29
|
作者
Gerdts, Matthias [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
optimal control; nonsmooth Newton method; control-state constraints; global convergence;
D O I
10.1137/060657546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a nonsmooth Newton method for the numerical solution of optimal control problems subject to mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and nonsmooth equation in appropriate Banach spaces. This nonlinear and nonsmooth equation is solved by a nonsmooth Newton's method. We prove the global convergence and the locally superlinear convergence under certain regularity conditions. The globalized method is based on the minimization of the squared residual norm. Numerical examples for the Rayleigh problem conclude the article.
引用
收藏
页码:326 / 350
页数:25
相关论文
共 50 条
  • [41] POD a-posteriori error analysis for optimal control problems with mixed control-state constraints
    Gubisch, Martin
    Volkwein, Stefan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (03) : 619 - 644
  • [42] Existence Theorem for Infinite Horizon Optimal Control Problems with Mixed Control-State Isoperimetrical Constraint
    Lykina, Valeriya
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 228 - 236
  • [43] POD a-posteriori error analysis for optimal control problems with mixed control-state constraints
    Martin Gubisch
    Stefan Volkwein
    Computational Optimization and Applications, 2014, 58 : 619 - 644
  • [44] A multigrid method for constrained optimal control problems
    Engel, M.
    Griebel, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) : 4368 - 4388
  • [45] Sensitivity analysis for parametric control problems with control-state constraints
    Systems Research Inst, Warszawa, Poland
    Comput Optim Appl, 3 (253-283):
  • [46] Dual convergence of the legendre pseudospectral method for solving nonlinear constrained optimal control problems
    Gong, Q
    Ross, IM
    Kang, W
    Fahroo, F
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, : 431 - 436
  • [47] Convergence of pseudospectral methods for constrained nonlinear optimal control problems
    Gong, Q
    Ross, IM
    Kang, W
    Fahroo, F
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2004, : 209 - 214
  • [48] Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints
    Bonnans, J. Frederic
    Hermant, Audrey
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 561 - 598
  • [49] Optimal control problems and nonsmooth analysis
    Zhu, Qiji J.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 1 : 25 - 28
  • [50] A hybrid semismooth quasi-Newton method for nonsmooth optimal control with PDEs
    Florian Mannel
    Armin Rund
    Optimization and Engineering, 2021, 22 : 2087 - 2125