Max-optimal and sum-optimal labelings of graphs

被引:1
|
作者
Jamison, Robert E. [2 ,3 ]
Narayan, Darren A. [1 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[3] Univ Haifa, IL-31999 Haifa, Israel
关键词
Graph algorithms; Rank number; Vertex coloring; MINIMAL RANKINGS; VERTEX RANKING;
D O I
10.1016/j.ipl.2011.09.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a graph G, a function f: V (G) -> {1, 2, ..., k} is a k-ranking of G if f (u) = f (v) implies that every u - v path contains a vertex w such that f (w) > f (u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. We consider two norms for minimal rankings. The max-optimal norm parallel to f(G)parallel to(infinity) is the smallest k for which G has a minimal k-ranking. This value is also referred to as the rank number chi(r)(G). In this paper we introduce the sum-optimal norm parallel to f(G)parallel to(1) which is the minimum sum of all labels over all minimal rankings. We investigate similarities and differences between the two norms. In particular we show rankings for paths and cycles that are sum-optimal are also max-optimal. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [41] Optimal Graphs with Prescribed Connectivities
    M. B. Abrosimov
    B. A. Terebin
    Mathematical Notes, 2023, 113 : 319 - 326
  • [42] Strict optimal rubbling of graphs
    Murphy, Kyle
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 349 - 361
  • [43] Pebbling and optimal pebbling in graphs
    Bunde, David P.
    Chambers, Erin W.
    Cranston, Daniel
    Milans, Kevin
    West, Douglas B.
    JOURNAL OF GRAPH THEORY, 2008, 57 (03) : 215 - 238
  • [44] Optimal vertex ordering of graphs
    Jiang, XY
    Bunke, H
    INFORMATION PROCESSING LETTERS, 1999, 72 (5-6) : 149 - 154
  • [45] The optimal pebbling of spindle graphs
    Gao, Ze-Tu
    Yin, Jian-Hua
    OPEN MATHEMATICS, 2019, 17 : 582 - 587
  • [46] ON OPTIMAL EMBEDDINGS OF METRICS IN GRAPHS
    IMRICH, W
    SIMOESPEREIRA, JMS
    ZAMFIRESCU, CM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 36 (01) : 1 - 15
  • [47] Optimal Potentials for Quantum Graphs
    Pavel Kurasov
    Andrea Serio
    Annales Henri Poincaré, 2019, 20 : 1517 - 1542
  • [48] Optimal pebbling in products of graphs
    Herscovici, David S.
    Hester, Benjamin D.
    Hurlbert, Glenn H.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 50 : 3 - 24
  • [49] CHROMATICALLY OPTIMAL RIGID GRAPHS
    NESETRIL, J
    RODL, V
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) : 133 - 141
  • [50] Fault Tolerance of λ-Optimal Graphs
    Chen, Xing
    Xiong, Wei
    Meng, Jixiang
    ARS COMBINATORIA, 2018, 138 : 355 - 364