Max-optimal and sum-optimal labelings of graphs

被引:1
|
作者
Jamison, Robert E. [2 ,3 ]
Narayan, Darren A. [1 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[3] Univ Haifa, IL-31999 Haifa, Israel
关键词
Graph algorithms; Rank number; Vertex coloring; MINIMAL RANKINGS; VERTEX RANKING;
D O I
10.1016/j.ipl.2011.09.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a graph G, a function f: V (G) -> {1, 2, ..., k} is a k-ranking of G if f (u) = f (v) implies that every u - v path contains a vertex w such that f (w) > f (u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. We consider two norms for minimal rankings. The max-optimal norm parallel to f(G)parallel to(infinity) is the smallest k for which G has a minimal k-ranking. This value is also referred to as the rank number chi(r)(G). In this paper we introduce the sum-optimal norm parallel to f(G)parallel to(1) which is the minimum sum of all labels over all minimal rankings. We investigate similarities and differences between the two norms. In particular we show rankings for paths and cycles that are sum-optimal are also max-optimal. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [21] OPTIMAL MAXIMAL GRAPHS
    Barrientos, Christian
    Youssef, Maged
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (02) : 85 - 97
  • [22] OPTIMAL PARTITIONING OF GRAPHS
    CHRISTOFIDES, N
    BROOKER, P
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) : 55 - 69
  • [23] Optimal pebbling of graphs
    Muntz, Jessica
    Narayan, Sivaram
    Streib, Noah
    Van Ochten, Kelly
    DISCRETE MATHEMATICS, 2007, 307 (17-18) : 2315 - 2321
  • [24] ON OPTIMAL ARRANGEMENT OF GRAPHS
    KURTUKOV, A
    ICC BULLETIN, 1967, 6 (03): : 143 - &
  • [25] OPTIMAL REARRANGEABLE GRAPHS
    CHUNG, FRK
    BELL SYSTEM TECHNICAL JOURNAL, 1975, 54 (09): : 1647 - 1661
  • [26] OPTIMAL APPROXIMATION OF SUM OF A SERIES
    BARANGER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (03): : 149 - &
  • [27] OPTIMAL AND NEAR-OPTIMAL BROADCAST IN RANDOM GRAPHS
    SCHEINERMAN, ER
    WIERMAN, JC
    DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) : 289 - 297
  • [28] Optimal graphs for chromatic polynomials
    Simonelli, Italo
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2228 - 2239
  • [29] Optimal vertex ordering of graphs
    Department of Computer Science, Univ. Bern, Inst. Informatic A., Bern, Switzerland
    Inf Process Lett, 5-6 (149-154):
  • [30] ON 1-OPTIMAL GRAPHS
    BODENDIEK, R
    SCHUMACHER, H
    WAGNER, K
    MATHEMATISCHE NACHRICHTEN, 1984, 117 : 323 - 339