A characterization of quadric constant mean curvature hypersurfaces of spheres

被引:14
|
作者
Alias, Luis J. [1 ]
Brasil, Aldir, Jr. [2 ]
Perdomo, Oscar [3 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[3] Cent Connecticut State Univ, Dept Math Sci, New Britain, CT 06050 USA
关键词
constant mean curvature; Clifford hypersurface; stability operator; first eigenvalue;
D O I
10.1007/s12220-008-9029-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi : M -> Sn+1 subset of Rn+2 be an immersion of a complete n-dimensional oriented manifold. For any upsilon is an element of Rn+2, let us denote by l(upsilon) : M -> R the function given by l(upsilon)(x) = [phi(x), upsilon] and by f(upsilon) : M -> R, the function given by f(upsilon)(x) = [nu(x), upsilon], where. : M -> Sn+1 subset of Rn+2 is a Gauss map. We will prove that if M has constant mean curvature, and, for some upsilon not equal 0 and some real number lambda, we have that l(upsilon) = lambda f(upsilon), then, phi(M) is either a totally umbilical sphere or a Clifford hypersurface. As an application, we will use this result to prove that the weak stability index of any compact constant mean curvature hypersurface M-n in Sn+1 which is neither totally umbilical nor a Clifford hypersurface and has constant scalar curvature is greater than or equal to 2n+4.
引用
收藏
页码:687 / 703
页数:17
相关论文
共 50 条
  • [41] HYPERSURFACES WITH CONSTANT EQUIAFFINE MEAN-CURVATURE
    SCHWENK, A
    SIMON, U
    [J]. ARCHIV DER MATHEMATIK, 1986, 46 (01) : 85 - 90
  • [42] Index growth of hypersurfaces with constant mean curvature
    Pierre Bérard
    Levi Lopes de Lima
    Wayne Rossman
    [J]. Mathematische Zeitschrift, 2002, 239 : 99 - 115
  • [43] STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE
    BARBOSA, JL
    DOCARMO, M
    ESCHENBURG, J
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1986, 58 (03): : 502 - 502
  • [44] Hypersurfaces with constant mean curvature of hyperbolic space
    Polombo, A
    [J]. OSAKA JOURNAL OF MATHEMATICS, 1997, 34 (03) : 579 - 588
  • [45] Hypersurfaces with Constant Mean Curvature in Space Forms
    Song Hongzao
    Hu Zejun
    Hu Conge(Henan University) (Zhengzhou University) (Henan University)
    [J]. Chinese Quarterly Journal of Mathematics, 1996, (01) : 42 - 48
  • [46] HYPERSURFACES OF MINKOWSKI SPACE WITH CONSTANT MEAN CURVATURE
    Li, Jintang
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 137 - 145
  • [47] Rigidity theorems for hypersurfaces with constant mean curvature
    Josué Meléndez
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 385 - 404
  • [48] Delaunay hypersurfaces with constant nonlocal mean curvature
    Cabre, Xavier
    Fall, Mouhamed Moustapha
    Weth, Tobias
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 32 - 70
  • [49] HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A HYPERBOLIC SPACE
    苏变萍
    舒世昌
    Yi Annie Han
    [J]. Acta Mathematica Scientia, 2011, 31 (03) : 1091 - 1102
  • [50] HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A HYPERBOLIC SPACE
    Su Bianping
    Shu Shichang
    Han, Yi Annie
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) : 1091 - 1102