HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A HYPERBOLIC SPACE

被引:0
|
作者
苏变萍
舒世昌
Yi Annie Han
机构
[1] Department of Science Xi’an University of Architecture and Technology
[2] Department of Mathematics Xianyang Normal University
[3] Department of Mathematics Borough of Manhattan Community College City University of New York
关键词
hypersurface; hyperbolic space; scalar curvature; mean curvature; principal curvature;
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
0701 ; 070101 ;
摘要
Let Mn be an n-dimensional complete connected and oriented hypersurface in a hyperbolic space Hn+1(c) with non-zero constant mean curvature H and two distinct principal curvatures. In this paper, we show that (1) if the multiplicities of the two distinct principal curvatures are greater than 1,then Mn is isometric to the Riemannian product Sk(r)×Hn-k(-1/(r2 + ρ2)), where r > 0 and 1 < k < n - 1;(2)if H2 > -c and one of the two distinct principal curvatures is simple, then Mn is isometric to the Riemannian product Sn-1(r) × H1(-1/(r2 +ρ2)) or S1(r) × Hn-1(-1/(r2 +ρ2)),r > 0, if one of the following conditions is satisfied (i) S≤(n-1)t22+c2t-22 on Mn or (ii)S≥ (n-1)t21+c2t-21 on Mn or(iii)(n-1)t22+c2t-22≤ S≤(n-1)t21+c2t-21 on Mn, where t1 and t2 are the positive real roots of (1.5).
引用
收藏
页码:1091 / 1102
页数:12
相关论文
共 50 条