constant mean curvature hypersurface;
asymptotic plateau problem;
53A10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the constant mean curvature (CMC) hypersurfaces in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{H}^{n+1}$$\end{document} whose asymptotic boundaries are closed codimension-1 submanifolds in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^{n}_{\infty}(\mathbb{H}^{n+1})$$\end{document}. We consider CMC hypersurfaces as generalizations of minimal hypersurfaces. We naturally generalize some notions of minimal hypersurfaces like being area-minimizing, convex hull property, exchange roundoff trick to CMC hypersurface context. We also give a generic uniqueness result for CMC hypersurfaces in hyperbolic space.