Minimizing Constant Mean Curvature Hypersurfaces in Hyperbolic Space

被引:0
|
作者
Baris Coskunuzer
机构
[1] Yale University,Department of Mathematics
来源
Geometriae Dedicata | 2006年 / 118卷
关键词
constant mean curvature hypersurface; asymptotic plateau problem; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the constant mean curvature (CMC) hypersurfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{H}^{n+1}$$\end{document} whose asymptotic boundaries are closed codimension-1 submanifolds in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{n}_{\infty}(\mathbb{H}^{n+1})$$\end{document}. We consider CMC hypersurfaces as generalizations of minimal hypersurfaces. We naturally generalize some notions of minimal hypersurfaces like being area-minimizing, convex hull property, exchange roundoff trick to CMC hypersurface context. We also give a generic uniqueness result for CMC hypersurfaces in hyperbolic space.
引用
收藏
页码:157 / 171
页数:14
相关论文
共 50 条