scAPAtrap: identification and quantification of alternative polyadenylation sites from single-cell RNA-seq data

被引:22
|
作者
Wu, Xiaohui [1 ]
Liu, Tao [1 ]
Ye, Congting [2 ]
Ye, Wenbin [1 ]
Ji, Guoli [1 ]
机构
[1] Xiamen Univ, Dept Automat, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Environm & Ecol, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
alternative polyadenylation; single-cell RNA-seq; 3 ' untranslated region; RNA processing; software; REVEALS; EXPRESSION; DYNAMICS; LANDSCAPE; SIGNALS; CLEAVAGE; CANCER; TOOL;
D O I
10.1093/bib/bbaa273
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Alternative polyadenylation (APA) generates diverse mRNA isoforms, which contributes to transcriptome diversity and gene expression regulation by affecting mRNA stability, translation and localization in cells. The rapid development of 3' tag-based single-cell RNA-sequencing (scRNA-seq) technologies, such as CEL-seq and 10x Genomics, has led to the emergence of computational methods for identifying APA sites and profiling APA dynamics at single-cell resolution. However, existing methods fail to detect the precise location of poly(A) sites or sites with low read coverage. Moreover, they rely on priori genome annotation and can only detect poly(A) sites located within or near annotated genes. Here we proposed a tool called scAPAtrap for detecting poly(A) sites at the whole genome level in individual cells from 3' tag-based scRNA-seq data. scAPAtrap incorporates peak identification and poly(A) read anchoring, enabling the identification of the precise location of poly(A) sites, even for sites with low read coverage. Moreover, scAPAtrap can identify poly(A) sites without using priori genome annotation, which helps locate novel poly(A) sites in previously overlooked regions and improve genome annotation. We compared scAPAtrap with two latest methods, scAPA and Sierra, using scRNA-seq data from different experimental technologies and species. Results show that scAPAtrap identified poly(A) sites with higher accuracy and sensitivity than competing methods and could be used to explore APA dynamics among cell types or the heterogeneous APA isoform expression in individual cells. scAPAtrap is available at https://github.com/BMILAB/scAPAtrap.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [32] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [33] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [34] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [35] Review of single-cell RNA-seq data clustering for cell-type identification and characterization
    Zhang, Shixiong
    Li, Xiangtao
    Lin, Jiecong
    Lin, Qiuzhen
    Wong, Ka-Chun
    RNA, 2023, 29 (05) : 517 - 530
  • [36] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [37] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [38] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [39] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [40] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220