DYNAMICS OF ROGUE WAVES ON A MULTISOLITON BACKGROUND IN A VECTOR NONLINEAR SCHRODINGER EQUATION

被引:94
|
作者
Mu, Gui [1 ]
Qin, Zhenyun [2 ,3 ]
Grimshaw, Roger [4 ]
机构
[1] Qujing Normal Univ, Coll Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
[2] Fudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[4] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
基金
上海市自然科学基金;
关键词
vector nonlinear Schrodinger equations; rogue waves; Darboux-dressing transformation; SOLITON;
D O I
10.1137/140963686
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General higher-order rogue waves of a vector nonlinear Schrodinger equation (Manakov system) are derived using a Darboux-dressing transformation with an asymptotic expansion method. The Nth-order semirational solutions containing 3N free parameters are expressed in separation-of-variables form. These solutions exhibit rogue waves on a multisoliton background. They demonstrate that the structure of rogue waves in this two-component system is richer than that in a one-component system. Our results would be of much importance in understanding and predicting rogue wave phenomena arising in nonlinear and complex systems, including optics, fluid dynamics, Bose-Einstein condensates, and finance.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [22] Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrodinger equation
    Peng, Wei-Qi
    Tian, Shou-Fu
    Zhang, Tian-Tian
    [J]. EPL, 2018, 123 (05)
  • [23] Multiperiodic and multisoliton solutions of a nonlocal nonlinear Schrodinger equation for envelope waves
    Matsuno, Y
    [J]. PHYSICS LETTERS A, 2000, 278 (1-2) : 53 - 58
  • [24] Characteristics of rogue waves on a soliton background in the general three-component nonlinear Schrodinger equation
    Wang, Xiu-Bin
    Han, Bo
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 88 : 688 - 700
  • [25] Breathers, rogue waves and their dynamics in a (2+1)-dimensional nonlinear Schrodinger equation
    Chen, Yong
    Wang, Xiu-Bin
    Han, Bo
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (23):
  • [26] Vector rogue waves in the mixed coupled nonlinear Schrodinger equations
    Li, Min
    Liang, Huan
    Xu, Tao
    Liu, Changjing
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (04):
  • [27] Rogue waves for an inhomogeneous discrete nonlinear Schrodinger equation in a lattice
    Wu, Xiao-Yu
    Tian, Bo
    Du, Zhong
    Du, Xia-Xia
    [J]. MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [28] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation
    Guo, Ya-Hui
    Zuo, Da-Wei
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [29] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):
  • [30] Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation
    Bertola, Marco
    El, Gennady A.
    Tovbis, Alexander
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):