Bifurcation of vortex solutions to a Ginzburg-Landau equation in an annulus

被引:0
|
作者
Morita, Yoshihisa [1 ]
机构
[1] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a simplified Ginzburg-Landau model of superconductivity in an annulus domain. This model equation has two physical parameters lambda and h which are related to the Ginzburg-Landau parameter and strength of an applied magnetic field respectively. Then a solution with k-mode in the polar angle bifurcates from the trivial solution at appropriate parameter values lambda and h. This solution is vortexless, that is, it has no zeros. We study the bifurcation near the critical point on which bifurcation curves corresponding to two different modes intersect in the parameter space (h, lambda). We then investigate the local bifurcation structure around the critical point and prove the existence of a vortex solution under a generic condition. In particular we show that the solution has zeros on a boundary if the parameters is on some curve emanating from the critical point. The stability of the vortex solution is also discussed by applying the center manifold theorem.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [31] A remark on multiplicity of solutions for the Ginzburg-Landau equation
    Zhou, F
    Zhou, Q
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (02): : 255 - 267
  • [32] Bifurcations of Nonconstant Solutions of the Ginzburg-Landau Equation
    Hirano, Norimichi
    Rybicki, Slawomir
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [33] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [34] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    [J]. ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [35] UNIQUENESS AND MINIMALITY OF SOLUTIONS OF A GINZBURG-LANDAU EQUATION
    CARBOU, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (03): : 305 - 318
  • [36] Isolated Spiral Solutions of the Ginzburg-Landau Equation
    Guzman-Velazquez, Alexandra
    Ledesma-Duran, Aldo
    Fernandez, Joaquin Delgado
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024,
  • [37] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    [J]. RESULTS IN PHYSICS, 2021, 23
  • [38] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    [J]. MATEMATIKA, 2009, 25 (01): : 39 - 51
  • [39] ON THE STABILITY OF RADIAL SOLUTIONS OF THE GINZBURG-LANDAU EQUATION
    MIRONESCU, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 334 - 344
  • [40] The Evolution Solutions for Complex Ginzburg-Landau equation
    Wang, Hong-Lei
    Xiang, Chun-Huan
    [J]. PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1630 - 1633