Bifurcation of vortex solutions to a Ginzburg-Landau equation in an annulus

被引:0
|
作者
Morita, Yoshihisa [1 ]
机构
[1] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a simplified Ginzburg-Landau model of superconductivity in an annulus domain. This model equation has two physical parameters lambda and h which are related to the Ginzburg-Landau parameter and strength of an applied magnetic field respectively. Then a solution with k-mode in the polar angle bifurcates from the trivial solution at appropriate parameter values lambda and h. This solution is vortexless, that is, it has no zeros. We study the bifurcation near the critical point on which bifurcation curves corresponding to two different modes intersect in the parameter space (h, lambda). We then investigate the local bifurcation structure around the critical point and prove the existence of a vortex solution under a generic condition. In particular we show that the solution has zeros on a boundary if the parameters is on some curve emanating from the critical point. The stability of the vortex solution is also discussed by applying the center manifold theorem.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [21] Bifurcation and stability of the generalized complex Ginzburg-Landau equation
    Park, Jungho
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) : 1237 - 1253
  • [22] A variety of vortex state solutions of Ginzburg-Landau equation on superconducting mesoscopic plates
    Sato, O.
    Kato, M.
    [J]. 29TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY, 2017, 871
  • [23] Fourfold symmetric vortex solutions of the d-wave Ginzburg-Landau equation
    Han, Q
    Lin, TC
    [J]. NONLINEARITY, 2002, 15 (02) : 257 - 269
  • [24] SHOOTING METHOD FOR VORTEX SOLUTIONS OF A COMPLEX-VALUED GINZBURG-LANDAU EQUATION
    CHEN, XF
    ELLIOTT, CM
    QI, T
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1075 - 1088
  • [25] Vortex pinning with bounded fields for the Ginzburg-Landau equation
    Andre, N
    Bauman, P
    Phillips, D
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04): : 705 - 729
  • [26] Instability of the vortex solution in the complex Ginzburg-Landau equation
    Lin, TC
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (01) : 11 - 17
  • [27] The Ginzburg-Landau equation III. Vortex dynamics
    Ovchinnikov, YN
    Sigal, IM
    [J]. NONLINEARITY, 1998, 11 (05) : 1277 - 1294
  • [28] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [29] Small energy solutions to the Ginzburg-Landau equation
    Bethuel, F
    Brezis, H
    Orlandi, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10): : 763 - 770
  • [30] Reconnection of vortex filaments in the complex Ginzburg-Landau equation
    Gabbay, M
    Ott, E
    Guzdar, PN
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 2576 - 2579