Assessment and selection of filler compounds for radiopaque PolyJet multi-material 3D printing for use in clinical settings

被引:4
|
作者
Shannon, Alice [1 ,2 ,3 ]
JO'Sullivan, Kevin [1 ,3 ,4 ]
Clifford, Seamus [5 ]
O'Sullivan, Leonard [1 ,3 ,4 ]
机构
[1] Univ Limerick, Sch Design, Design Factors Res Grp, Limerick, Ireland
[2] Our Ladys Childrens Hosp, Natl Childrens Res Ctr, Gate 5, Dublin 12, Ireland
[3] Univ Limerick, Hlth Res Inst, Limerick, Ireland
[4] Univ Limerick, Confirm Smart Mfg Ctr, Limerick, Ireland
[5] Univ Limerick, Sch Engn, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Radiopaque; 3D print; additive compounds; medical device; additive manufacturing; rapid prototyping; ANTIBACTERIAL PROPERTIES; PORTLAND-CEMENT; ZIRCONIUM-OXIDE; NANOPARTICLES; BIOCOMPATIBILITY; PHANTOM; FUTURE; IODINE; HEAD;
D O I
10.1177/09544119221084819
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The aim of this research was to assess a selection of radiopaque filler compounds for increasing radiopacity in a resin suitable for Polyjet multi-material 3D printing. A radiopaque resin has potential applications in medicine to produce patient-specific anatomical models with realistic radiological properties, training aids, and skin contacting components such as surgical or procedural guides that require visibility under fluoroscopy. The desirable filler would have a high level of radiopacity under ionising imaging modalities, such as X-ray, CT, fluoroscopy or angiography. Nine potential filler compounds were selected based on atomic number and handling risk: barium sulphate, bismuth oxide, zirconium oxide, strontium oxide, strontium fluoride, strontium carbonate, iodine, niobium oxide and tantalum oxide. The fillers were evaluated using selected criteria. A weighted material selection matrix was developed to prioritise and select a filler for future 3D printing on a multi-material 3D printer. Zirconium oxide was the highest scoring filler compound in the material selection matrix, scoring 4.4 out of a maximum of 5. MED610(TM) resin doped with zirconium oxide was shown to be UV curable, and when cured is non-toxic, environmentally friendly, and has the ability to display antimicrobial properties. In terms of radiopacity, a sample with thickness 1.5 mm of MED610 (TM) resin doped with 20 wt.% zirconium oxide produced X-ray radiopacity equivalent to 3 mm of aluminium. Zirconium oxide was selected using the material selection matrix. This radiopaque resin can be used to produce anatomical models with accurate radiological properties, training aids or skin contacting devices that require visibility under ionising imaging modalities. The 3D printing validation run successfully demonstrated that the material selection matrix prioritised a filler suitable for radiopaque multi-material 3D printing.
引用
收藏
页码:740 / 747
页数:8
相关论文
共 50 条
  • [41] Electrochemically driven multi-material 3D-printing
    Ambrosi, Adriano
    Webster, Richard D.
    Pumera, Martin
    APPLIED MATERIALS TODAY, 2020, 18
  • [42] Personalized transformation of 3D printing for traditional multi-material food with stuffing:A review
    Tang, Tiantian
    Zhang, Min
    Bhandari, Bhesh
    Li, Chunli
    FOOD BIOSCIENCE, 2024, 59
  • [43] A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization
    Shaukat, Usman
    Rossegger, Elisabeth
    Schloegl, Sandra
    POLYMERS, 2022, 14 (12)
  • [44] Multi-material 3D printing of piezoelectric and triboelectric integrated nanogenerators with voxel structure
    Chen, Fang
    An, Zimo
    Chen, Yinghong
    Li, Yijun
    Liu, Xingang
    Chen, Ning
    Ru, Yue
    Gao, Dali
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [45] Stress concentration targeted reinforcement using multi-material based 3D printing
    Singh, Himanshu
    Ambekar, Rushikesh S.
    Saxena, Prateek
    Woellner, Cristiano F.
    Katiyar, Nirmal Kumar
    Tiwary, Chandra Sekhar
    APPLIED MATERIALS TODAY, 2024, 36
  • [46] Amoeboid soft robot based on multi-material composite 3D printing technology
    Deng, Chengyao
    Dong, Jiahao
    Guo, Yifei
    Sun, Xudong
    Song, Zhongru
    Li, Zhenkun
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 588
  • [47] MultiJam: Fabricating Jamming User Interface using Multi-material 3D Printing
    Yang, Munseok
    Yamaoka, Junichi
    TEI'22: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, 2022,
  • [48] Multi-Material 3D Printing of a Customized Sports Mouth Guard: Proof-of-Concept Clinical Case
    Unkovskiy, Alexey
    Huettig, Fabian
    Kraemer-Fernandez, Pablo
    Spintzyk, Sebastian
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (23)
  • [49] MULTI-MATERIAL 3D PRINTING OF CERAMICS FOR FABRICATING BI-PHASIC IMPLANTS
    Schwentenwein, Martin
    Geier, Sebastian
    Nohut, Serkan
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 201 - 201
  • [50] 5-axis multi-material 3D printing of curved electrical traces
    Hong, Freddie
    Lampret, Borut
    Myant, Connor
    Hodges, Steve
    Boyle, David
    ADDITIVE MANUFACTURING, 2023, 70