Assessment and selection of filler compounds for radiopaque PolyJet multi-material 3D printing for use in clinical settings

被引:4
|
作者
Shannon, Alice [1 ,2 ,3 ]
JO'Sullivan, Kevin [1 ,3 ,4 ]
Clifford, Seamus [5 ]
O'Sullivan, Leonard [1 ,3 ,4 ]
机构
[1] Univ Limerick, Sch Design, Design Factors Res Grp, Limerick, Ireland
[2] Our Ladys Childrens Hosp, Natl Childrens Res Ctr, Gate 5, Dublin 12, Ireland
[3] Univ Limerick, Hlth Res Inst, Limerick, Ireland
[4] Univ Limerick, Confirm Smart Mfg Ctr, Limerick, Ireland
[5] Univ Limerick, Sch Engn, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Radiopaque; 3D print; additive compounds; medical device; additive manufacturing; rapid prototyping; ANTIBACTERIAL PROPERTIES; PORTLAND-CEMENT; ZIRCONIUM-OXIDE; NANOPARTICLES; BIOCOMPATIBILITY; PHANTOM; FUTURE; IODINE; HEAD;
D O I
10.1177/09544119221084819
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The aim of this research was to assess a selection of radiopaque filler compounds for increasing radiopacity in a resin suitable for Polyjet multi-material 3D printing. A radiopaque resin has potential applications in medicine to produce patient-specific anatomical models with realistic radiological properties, training aids, and skin contacting components such as surgical or procedural guides that require visibility under fluoroscopy. The desirable filler would have a high level of radiopacity under ionising imaging modalities, such as X-ray, CT, fluoroscopy or angiography. Nine potential filler compounds were selected based on atomic number and handling risk: barium sulphate, bismuth oxide, zirconium oxide, strontium oxide, strontium fluoride, strontium carbonate, iodine, niobium oxide and tantalum oxide. The fillers were evaluated using selected criteria. A weighted material selection matrix was developed to prioritise and select a filler for future 3D printing on a multi-material 3D printer. Zirconium oxide was the highest scoring filler compound in the material selection matrix, scoring 4.4 out of a maximum of 5. MED610(TM) resin doped with zirconium oxide was shown to be UV curable, and when cured is non-toxic, environmentally friendly, and has the ability to display antimicrobial properties. In terms of radiopacity, a sample with thickness 1.5 mm of MED610 (TM) resin doped with 20 wt.% zirconium oxide produced X-ray radiopacity equivalent to 3 mm of aluminium. Zirconium oxide was selected using the material selection matrix. This radiopaque resin can be used to produce anatomical models with accurate radiological properties, training aids or skin contacting devices that require visibility under ionising imaging modalities. The 3D printing validation run successfully demonstrated that the material selection matrix prioritised a filler suitable for radiopaque multi-material 3D printing.
引用
收藏
页码:740 / 747
页数:8
相关论文
共 50 条
  • [31] Magnetic properties of ferromagnetic materials produced by 3D multi-material printing
    Trnka, Nikolaus
    Rudolph, Johannes
    Werner, Ralf
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 326 - 331
  • [32] MultiFab: A Machine Vision Assisted Platform for Multi-material 3D Printing
    Sitthi-Amorn, Pitchaya
    Ramos, Javier E.
    Wang, Yuwang
    Kwan, Joyce
    Lan, Justin
    Wang, Wenshou
    Matusik, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [33] Multi-material 3D Printing in Brachytherapy- Prototyping Teaching Tools
    Campelo, S.
    Subashi, E.
    Chang, Z.
    Meltsner, S. G.
    Chino, J. P.
    Craciunescu, O. I.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E437 - E437
  • [34] Omnidirectional and Multi-Material In Situ 3D Printing Using Acoustic Levitation
    Chen, Hongyi
    Bansal, Shubhi
    Plasencia, Diego Martinez
    Di-Silvio, Lucy
    Huang, Jie
    Subramanian, Sriram
    Hirayama, Ryuji
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [35] Coating process of multi-material composite sand mold 3D printing
    Zhong-de Shan
    Zhi Guo
    Dong Du
    Feng Liu
    China Foundry, 2017, 14 (06) : 498 - 505
  • [36] Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices
    Chen, Hui
    Guo, Liang
    Zhu, Wenbo
    Li, Chunlai
    POLYMERS, 2022, 14 (21)
  • [37] Multi-material vat photopolymerization 3D printing: a review of mechanisms and applications
    Saroj Subedi
    Siying Liu
    Wenbo Wang
    S. M. Abu Naser Shovon
    Xiangfan Chen
    Henry Oliver T. Ware
    npj Advanced Manufacturing, 1 (1):
  • [38] 3D printing of multi-material composites with tunable shape memory behavior
    Yuan, Chao
    Wang, Fangfang
    Qi, Biyun
    Ding, Zhen
    Rosen, David W.
    Ge, Qi
    MATERIALS & DESIGN, 2020, 193
  • [39] The Research on Multi-Material 3D Vascularized Network Integrated Printing Technology
    Yang, Shuai
    Tang, Hao
    Feng, Chunmei
    Shi, Jianping
    Yang, Jiquan
    MICROMACHINES, 2020, 11 (03)
  • [40] Multi-material ceramic material extrusion 3D printing with granulated injection molding feedstocks
    Wick-Joliat, Rene
    Schroffenegger, Martina
    Penner, Dirk
    CERAMICS INTERNATIONAL, 2023, 49 (04) : 6361 - 6367