Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons

被引:0
|
作者
Han, Ligong [1 ]
Gao, Ruijiang [2 ]
Kim, Mun [1 ]
Tao, Xin [3 ]
Liu, Bo [4 ]
Metaxas, Dimitris [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08901 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
[3] Tencent YouTu Lab, Shenzhen, Peoples R China
[4] JD Finance Amer Corp, Mountain View, CA 94043 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional generative adversarial networks have shown exceptional generation performance over the past few years. However, they require large numbers of annotations. To address this problem, we propose a novel generative adversarial network utilizing weak supervision in the form of pairwise comparisons (PC-GAN) for image attribute editing. In the light of Bayesian uncertainty estimation and noise-tolerant adversarial training, PC-GAN can estimate attribute rating efficiently and demonstrate robust performance in noise resistance. Through extensive experiments, we show both qualitatively and quantitatively that PC-GAN performs comparably with fully-supervised methods and outperforms unsupervised baselines. Code and Supplementary can be found on the project website*.
引用
收藏
页码:10909 / 10916
页数:8
相关论文
共 50 条
  • [41] Uncertainty-aware Simulation of Adaptive Systems
    Jezequel, Jean-Marc
    Vallecillo, Antonio
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2023, 33 (03):
  • [42] Load Uncertainty-Aware Economic Dispatch
    Rawal, Keerti
    Ahmad, Aijaz
    2023 IEEE PES 15TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE, APPEEC, 2023,
  • [43] Uncertainty-Aware Camera Pose Estimation from Points and Lines
    Vakhitov, Alexander
    Ferraz Colomina, Luis
    Agudo, Antonio
    Moreno-Noguer, Francesc
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4657 - 4666
  • [44] Uncertainty-aware LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buscher, Daniel
    Burgard, Wolfram
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 8277 - 8283
  • [45] Uncertainty-Aware RGBD Image Segmentation
    Yu, Chengxiao
    Wang, Xin
    Wang, Junqiu
    Zha, Hongbin
    2017 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS (CBS), 2017, : 97 - 102
  • [46] Uncertainty-aware Wireless Sensor Networks
    Mal-Sarkar, Sanchita
    Sikder, Iftikhar U.
    Yu, Chansu
    Konangi, Vijay K.
    INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS, 2009, 7 (03) : 330 - 345
  • [47] Uncertainty-aware Binary Neural Networks
    Zhao, Junhe
    Yang, Linlin
    Zhang, Baochang
    Guo, Guodong
    Doermann, David
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3441 - 3447
  • [48] Uncertainty-aware Cross-dataset Facial Expression Recognition via Regularized Conditional Alignment
    Zhou, Linyi
    Fan, Xijian
    Ma, Yingjie
    Tjahjadi, Tardi
    Ye, Qiaolin
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2964 - 2972
  • [49] Micro-Expression Recognition Using Uncertainty-Aware Magnification-Robust Networks
    Wei, Mengting
    Zong, Yuan
    Jiang, Xingxun
    Lu, Cheng
    Liu, Jiateng
    ENTROPY, 2022, 24 (09)
  • [50] ROBUST AND UNCERTAINTY-AWARE VAE (RU-VAE) FOR ONE-CLASS CLASSIFICATION
    Sharma, Renuka
    Awate, Suyash P.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,