Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons

被引:0
|
作者
Han, Ligong [1 ]
Gao, Ruijiang [2 ]
Kim, Mun [1 ]
Tao, Xin [3 ]
Liu, Bo [4 ]
Metaxas, Dimitris [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08901 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
[3] Tencent YouTu Lab, Shenzhen, Peoples R China
[4] JD Finance Amer Corp, Mountain View, CA 94043 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional generative adversarial networks have shown exceptional generation performance over the past few years. However, they require large numbers of annotations. To address this problem, we propose a novel generative adversarial network utilizing weak supervision in the form of pairwise comparisons (PC-GAN) for image attribute editing. In the light of Bayesian uncertainty estimation and noise-tolerant adversarial training, PC-GAN can estimate attribute rating efficiently and demonstrate robust performance in noise resistance. Through extensive experiments, we show both qualitatively and quantitatively that PC-GAN performs comparably with fully-supervised methods and outperforms unsupervised baselines. Code and Supplementary can be found on the project website*.
引用
收藏
页码:10909 / 10916
页数:8
相关论文
共 50 条
  • [21] Uncertainty-aware Situational Understanding
    Tomsett, Richard
    Kaplan, Lance
    Cerutti, Federico
    Sullivan, Paul
    Vente, Daniel
    Vilamala, Marc Roig
    Kimmig, Angelika
    Preece, Alun
    Sensoy, Murat
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
  • [22] Bias-aware ranking from pairwise comparisons
    Ferrara, Antonio
    Bonchi, Francesco
    Fabbri, Francesco
    Karimi, Fariba
    Wagner, Claudia
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (04) : 2062 - 2086
  • [23] RobOpt: A Tool for Robust Workload Optimization Based on Uncertainty-Aware Machine Learning
    Kamali, Amin
    Kantere, Verena
    Zuzarte, Calisto
    Corvinelli, Vincent
    COMPANION OF THE 2024 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD-COMPANION 2024, 2024, : 468 - 471
  • [24] Apparent Personality Recognition from Uncertainty-Aware Facial Emotion Predictions using Conditional Latent Variable Models
    Tellamekala, Mani Kumar
    Giesbrecht, Timo
    Valstar, Michel
    2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [25] CUA Loss: Class Uncertainty-Aware Gradient Modulation for Robust Object Detection
    Kim, Jung Uk
    Kim, Seong Tae
    Lee, Hong Joo
    Lee, Sangmin
    Ro, Yong Man
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (09) : 3529 - 3543
  • [26] MagicScaler: Uncertainty-aware, Predictive Autoscaling
    Pan, Zhicheng
    Wang, Yihang
    Zhang, Yingying
    Yang, Sean Bin
    Cheng, Yunyao
    Chen, Peng
    Guo, Chenjuan
    Wen, Qingsong
    Tian, Xiduo
    Dou, Yunliang
    Zhou, Zhiqiang
    Yang, Chengcheng
    Zhou, Aoying
    Yang, Bin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (12): : 3808 - 3821
  • [27] Uncertainty-Aware Scene Graph Generation
    Li, Xuewei
    Wu, Tao
    Zheng, Guangcong
    Yu, Yunlong
    Li, Xi
    PATTERN RECOGNITION LETTERS, 2023, 167 : 30 - 37
  • [28] An Uncertainty-Aware Encoder for Aspect Detection
    Nguyen, Thi-Nhung
    Nguyen, Kiem-Hieu
    Song, Young-In
    Cao, Tuan-Dung
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 797 - 806
  • [29] Simple, Robust and Optimal Ranking from Pairwise Comparisons
    Shah, Nihar B.
    Wainwright, Martin J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [30] Uncertainty-Aware Reliable Text Classification
    Hu, Yibo
    Khan, Latifur
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 628 - 636