Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation

被引:0
|
作者
Yan, Jinliang [1 ,2 ]
Zhu, Ling [3 ]
Lu, Fuqiang [4 ]
Zheng, Sihui [1 ]
机构
[1] Wuyi Univ, Coll Math & Comp, Fujian Key Lab Big Data Applicat & Intellectualiz, Wu Yi Shan 354300, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[3] Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
[4] Changzhou Inst Technol, Changzhou 213032, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy-preserving schemes; IEQ method; SAV method; Crank-Nicolson; Leap-frog; mKdV equation; STABLE SCHEMES; SAV APPROACH; EFFICIENT; MODELS; WAVES;
D O I
10.1007/s11075-022-01312-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some linearly implicit modified energy-conserving schemes are proposed for the modified Korteweg-de Vries equation (mKdV). The proposed schemes are based on the recently developed invariant energy quadratization (IEQ) approach and the scalar auxiliary variable (SAV) approach. We first introduce an auxiliary variable to transform the original model into an equivalent system, with a modified energy functional law. Then, the Fourier pseudospectral method is employed for the spatial discretization, and Crank-Nicolson, and Leap-Frog methods are used for the temporal discretization. We analyze the conservation properties, existence and uniqueness and the linear stability of the proposed schemes. The optimal order convergence rate of the semi-discrete scheme and the fully discrete schemes were analyzed, respectively. At last, some numerical examples are presented to illustrate the effectiveness of the proposed schemes.
引用
收藏
页码:1511 / 1546
页数:36
相关论文
共 50 条
  • [1] Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation
    Jinliang Yan
    Ling Zhu
    Fuqiang Lu
    Sihui Zheng
    [J]. Numerical Algorithms, 2022, 91 : 1511 - 1546
  • [2] LINEARLY IMPLICIT ENERGY-PRESERVING FOURIER PSEUDOSPECTRAL SCHEMES FOR THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION
    Yan, J. L.
    Zheng, L. H.
    Zhu, L.
    Lu, F. Q.
    [J]. ANZIAM JOURNAL, 2020, 62 (03): : 256 - 273
  • [3] High-order Linearly Energy-preserving Compact Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Lu, Fu-Qiang
    Li, Wen-Jun
    [J]. ENGINEERING LETTERS, 2022, 30 (02)
  • [4] High-order Linearly Energy-preserving Compact Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Lu, Fu-Qiang
    Li, Wen-Jun
    [J]. Engineering Letters, 2022, 30 (02): : 681 - 691
  • [5] A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation
    Jin-Liang Yan
    Qian Zhang
    Zhi-Yue Zhang
    Dong Liang
    [J]. Numerical Algorithms, 2017, 74 : 659 - 674
  • [6] A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation
    Yan, Jin-Liang
    Zhang, Qian
    Zhang, Zhi-Yue
    Liang, Dong
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (03) : 659 - 674
  • [7] New energy-preserving finite volume element scheme for the korteweg-de vries equation
    Yan, Jin-liang
    Zheng, Liang-hong
    [J]. IAENG International Journal of Applied Mathematics, 2017, 47 (02) : 223 - 232
  • [8] A Novel Class of Energy-Preserving Runge-Kutta Methods for the Korteweg-de Vries Equation
    Chen, Yue
    Gong, Yuezheng
    Hong, Qi
    Wang, Chunwu
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (03) : 768 - 792
  • [9] Linearly-fitted energy-mass-preserving schemes for Korteweg-de Vries equations
    Liu, Kai
    Fu, Ting
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 448
  • [10] A Linear Energy-Preserving Finite Volume Element Method for the Improved Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Zhang, Zhi-Yue
    [J]. PHYSICS OF WAVE PHENOMENA, 2018, 26 (03) : 243 - 258