A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation

被引:0
|
作者
Jin-Liang Yan
Qian Zhang
Zhi-Yue Zhang
Dong Liang
机构
[1] Nanjing Normal University,Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences
[2] Wuyi University,Department of Mathematics and Computer
[3] York University,Department of Mathematics and Statistics
来源
Numerical Algorithms | 2017年 / 74卷
关键词
Mass; Momentum; Energy; Hamiltonian boundary value methods; Fourier pseudospectral method; mKdV equation; 65M99; 70H06; 74J35; 74S99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new high-order energy-preserving scheme is proposed for the modified Korteweg-de Vries equation. The proposed scheme is constructed by using the Hamiltonian boundary value methods in time, and Fourier pseudospectral method in space. Exploiting this method, we get second-order and fourth-order energy-preserving integrators. The proposed schemes not only have high accuracy, but also exactly conserve the total mass and energy in the discrete level. Finally, single solitary wave and the interaction of two solitary waves are presented to illustrate the effectiveness of the proposed schemes.
引用
收藏
页码:659 / 674
页数:15
相关论文
共 50 条
  • [1] A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation
    Yan, Jin-Liang
    Zhang, Qian
    Zhang, Zhi-Yue
    Liang, Dong
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (03) : 659 - 674
  • [2] New energy-preserving finite volume element scheme for the korteweg-de vries equation
    Yan, Jin-liang
    Zheng, Liang-hong
    [J]. IAENG International Journal of Applied Mathematics, 2017, 47 (02) : 223 - 232
  • [3] High-order Linearly Energy-preserving Compact Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Lu, Fu-Qiang
    Li, Wen-Jun
    [J]. ENGINEERING LETTERS, 2022, 30 (02)
  • [4] High-order Linearly Energy-preserving Compact Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Lu, Fu-Qiang
    Li, Wen-Jun
    [J]. Engineering Letters, 2022, 30 (02): : 681 - 691
  • [5] Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation
    Yan, Jinliang
    Zhu, Ling
    Lu, Fuqiang
    Zheng, Sihui
    [J]. NUMERICAL ALGORITHMS, 2022, 91 (04) : 1511 - 1546
  • [6] Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation
    Jinliang Yan
    Ling Zhu
    Fuqiang Lu
    Sihui Zheng
    [J]. Numerical Algorithms, 2022, 91 : 1511 - 1546
  • [7] LINEARLY IMPLICIT ENERGY-PRESERVING FOURIER PSEUDOSPECTRAL SCHEMES FOR THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION
    Yan, J. L.
    Zheng, L. H.
    Zhu, L.
    Lu, F. Q.
    [J]. ANZIAM JOURNAL, 2020, 62 (03): : 256 - 273
  • [8] A HIGH-ORDER PADE SCHEME FOR KORTEWEG-DE VRIES EQUATIONS
    Xu Zhen-li
    Liu Ru-xun
    [J]. JOURNAL OF HYDRODYNAMICS, 2005, 17 (06) : 654 - 659
  • [9] A HIGH-ORDER PAD SCHEME FOR KORTEWEG-DE VRIES EQUATIONS
    XU Zhen-li
    [J]. Journal of Hydrodynamics, 2005, (06) : 654 - 659
  • [10] A Novel Class of Energy-Preserving Runge-Kutta Methods for the Korteweg-de Vries Equation
    Chen, Yue
    Gong, Yuezheng
    Hong, Qi
    Wang, Chunwu
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (03) : 768 - 792