Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation

被引:0
|
作者
Yan, Jinliang [1 ,2 ]
Zhu, Ling [3 ]
Lu, Fuqiang [4 ]
Zheng, Sihui [1 ]
机构
[1] Wuyi Univ, Coll Math & Comp, Fujian Key Lab Big Data Applicat & Intellectualiz, Wu Yi Shan 354300, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[3] Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
[4] Changzhou Inst Technol, Changzhou 213032, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy-preserving schemes; IEQ method; SAV method; Crank-Nicolson; Leap-frog; mKdV equation; STABLE SCHEMES; SAV APPROACH; EFFICIENT; MODELS; WAVES;
D O I
10.1007/s11075-022-01312-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some linearly implicit modified energy-conserving schemes are proposed for the modified Korteweg-de Vries equation (mKdV). The proposed schemes are based on the recently developed invariant energy quadratization (IEQ) approach and the scalar auxiliary variable (SAV) approach. We first introduce an auxiliary variable to transform the original model into an equivalent system, with a modified energy functional law. Then, the Fourier pseudospectral method is employed for the spatial discretization, and Crank-Nicolson, and Leap-Frog methods are used for the temporal discretization. We analyze the conservation properties, existence and uniqueness and the linear stability of the proposed schemes. The optimal order convergence rate of the semi-discrete scheme and the fully discrete schemes were analyzed, respectively. At last, some numerical examples are presented to illustrate the effectiveness of the proposed schemes.
引用
收藏
页码:1511 / 1546
页数:36
相关论文
共 50 条
  • [21] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    [J]. ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [22] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [23] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [24] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [25] Multisymplectic box schemes and the Korteweg-de Vries equation
    Ascher, UM
    McLachlan, RI
    [J]. APPLIED NUMERICAL MATHEMATICS, 2004, 48 (3-4) : 255 - 269
  • [26] DISPERSIVE SCHEMES FOR THE CRITICAL KORTEWEG-DE VRIES EQUATION
    Audiard, Corentin
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14): : 2603 - 2646
  • [27] A Class of Momentum-Preserving Finite Difference Schemes for the Korteweg-de Vries Equation
    Jin-Liang Yan
    Liang-Hong Zheng
    [J]. Computational Mathematics and Mathematical Physics, 2019, 59 : 1582 - 1596
  • [28] A Class of Momentum-Preserving Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (10) : 1582 - 1596
  • [29] Observation of the inverse energy cascade in the modified Korteweg-de Vries equation
    Dutykh, D.
    Tobisch, E.
    [J]. EPL, 2014, 107 (01)
  • [30] New non-traveling solitary wave solutions for a second-order Korteweg-de Vries equation
    Hong, WP
    Jung, YD
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1999, 54 (6-7): : 375 - 378