An answer to a conjecture on Bernstein operators

被引:21
|
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Positive linear operator; Bernstein polynomials; Voronovskaja type theorem; Asymptotic expansion; APPROXIMATION;
D O I
10.1016/j.jmaa.2012.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an affirmative answer to a conjecture of G.T. Tachev concerning the moments of the Bernstein operators. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [31] On Genuine Bernstein–Durrmeyer Operators
    Heiner Gonska
    Daniela Kacsó
    Ioan Raşa
    Results in Mathematics, 2007, 50 : 213 - 225
  • [32] BERNSTEIN-STANCU OPERATORS
    Cleciu, Voichita Adriana
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 53 - 65
  • [33] Convergence of rational Bernstein operators
    Render, Hermann
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1076 - 1089
  • [34] On wavelet type Bernstein operators
    Karsli, H.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 15 (01) : 212 - 221
  • [35] On an extremal relation of Bernstein operators
    Bustamante, J.
    Quesada, J. M.
    JOURNAL OF APPROXIMATION THEORY, 2006, 141 (02) : 214 - 215
  • [36] MODIFIED BERNSTEIN OPERATORS.
    Jagers, G.A.
    Delft Progress Report, 1976, 2 (01): : 5 - 20
  • [37] ψ-Bernstein-Kantorovich operators
    Aktuglu, Huseyin
    Kara, Mustafa
    Baytunc, Erdem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1124 - 1141
  • [38] Approximation properties of λ-Bernstein operators
    Cai, Qing-Bo
    Lian, Bo-Yong
    Zhou, Guorong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [39] Approximation for a generalization of Bernstein operators
    Liu, Guofen
    Yang, Xiuzhong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [40] ESTIMATES FOR BERNSTEIN TYPE OPERATORS
    Finta, Zoltan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 127 - 135