An answer to a conjecture on Bernstein operators

被引:21
|
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Positive linear operator; Bernstein polynomials; Voronovskaja type theorem; Asymptotic expansion; APPROXIMATION;
D O I
10.1016/j.jmaa.2012.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an affirmative answer to a conjecture of G.T. Tachev concerning the moments of the Bernstein operators. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [21] Fractional approximation by Bernstein operators
    Yu, Dansheng
    Zhou, Ping
    FILOMAT, 2024, 38 (15) : 5499 - 5506
  • [22] Optimality of generalized Bernstein operators
    Aldaz, J. M.
    Render, H.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (07) : 1407 - 1416
  • [23] Bivariate Bernstein type operators
    Bascanbaz-Tunca, Gulen
    Ince-Ilarslan, Hatice Gul
    Erencin, Aysegul
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 543 - 552
  • [24] Differentiated Bernstein Type Operators
    Aral, Ali
    Acar, Tuncer
    Ozsarac, Firat
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2020, 13 : 47 - 54
  • [25] BERNSTEIN OPERATORS AND FINITE EXCHANGEABILITY
    POTZELBERGER, K
    JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 39 (01) : 60 - 78
  • [26] BERNSTEIN-DURRMEYER OPERATORS
    ADELL, JA
    DELACAL, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 1 - 14
  • [27] Approximation for a generalization of Bernstein operators
    Guofen Liu
    Xiuzhong Yang
    Journal of Inequalities and Applications, 2016
  • [28] A NOTE ON BERNSTEIN TYPE OPERATORS
    周定轩
    Approximation Theory and Its Applications, 1992, (01) : 97 - 100
  • [29] Bernstein Operators for Exponential Polynomials
    Aldaz, J. M.
    Kounchev, O.
    Render, H.
    CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 345 - 367
  • [30] On Genuine Bernstein–Durrmeyer Operators
    Heiner Gonska
    Daniela Kacsó
    Ioan Raşa
    Results in Mathematics, 2007, 50 : 213 - 225