An answer to a conjecture on Bernstein operators

被引:21
|
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Positive linear operator; Bernstein polynomials; Voronovskaja type theorem; Asymptotic expansion; APPROXIMATION;
D O I
10.1016/j.jmaa.2012.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an affirmative answer to a conjecture of G.T. Tachev concerning the moments of the Bernstein operators. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [1] An answer to Hermann's conjecture on Bleimann-Butzer-Hahn operators
    Abel, Ulrich
    Ivan, Mircea
    JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 304 - 310
  • [2] PROOF OF A CONJECTURE OF BERNSTEIN
    TADIC, M
    MATHEMATISCHE ANNALEN, 1985, 272 (01) : 11 - 16
  • [3] ON A CONJECTURE OF BERNSTEIN,V
    SHACKELL, JR
    ARKIV FOR MATEMATIK, 1969, 8 (01): : 83 - &
  • [4] The Eigenstructure of Operators Linking the Bernstein and the Genuine Bernstein–Durrmeyer operators
    Heiner Gonska
    Ioan Raşa
    Elena-Dorina Stănilă
    Mediterranean Journal of Mathematics, 2014, 11 : 561 - 576
  • [5] An Answer To The Conjecture Of Satnoianu
    Miao, Yu
    Xu, Shou Fang
    Chen, Ying Xia
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 262 - 265
  • [6] BERNSTEIN CONJECTURE IN HYPERBOLIC GEOMETRY
    WANG, SP
    WEI, SW
    ANNALS OF MATHEMATICS STUDIES, 1983, (103): : 339 - 358
  • [7] Analogue Zhelobenko invariants, Bernstein-Gelfand-Gelfand operators and the Kostant Clifford algebra conjecture
    Joseph, Anthony
    TRANSFORMATION GROUPS, 2012, 17 (03) : 823 - 833
  • [8] Zhelobenko invariants, Bernstein-Gelfand-Gelfand operators and the analogue Kostant Clifford algebra conjecture
    Anthony Joseph
    Transformation Groups, 2012, 17 : 781 - 821
  • [9] The Eigenstructure of Operators Linking the Bernstein and the Genuine Bernstein-Durrmeyer operators
    Gonska, Heiner
    Rasa, Ioan
    Stanila, Elena-Dorina
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 561 - 576
  • [10] A representation formula of Bernstein operators: On a representation formula of Bernstein operators by Kac
    Abel, Ulrich
    Ivan, Mircea
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (03): : 405 - 411