Non-symmetric polarization

被引:1
|
作者
Defant, Andreas
Schluters, Sunke
机构
关键词
Polarization; Polynomials; Multilinear forms; Schur multipliers; MULTIPLIERS;
D O I
10.1016/j.jmaa.2016.05.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P be an m-homogeneous polynomial in n-complex variables x(1),..., x(n). Clearly, P has a unique representation in the form P(x) = Sigma(1 <= j1 <=...<= jm <= n) c(j(1),...,j(m)) x(j1)...x(jm), and the m-form L-P(x((1)),...,x((m)))= Sigma(1 <= j1 <=...<= jm <= n) c(j(1),...,j(m)) x(j1)((1))...x(jm)((m)), satisfies L-P(x,...,x) = P(x) for every x is an element of C-n. We show that, although L-P in general is non-symmetric, for a large class of reasonable norms parallel to center dot parallel to on C-n the norm of L-P on (C-n, parallel to center dot parallel to)(m) up to a logarithmic term (c log n)(m2) can be estimated by the norm of P on (C-n parallel to center dot parallel to); here c >= 1 denotes a universal constant. Moreover, for the l(p)-norms parallel to center dot parallel to(p), 1 <= p < 2 the logarithmic term in the number n of variables is even superfluous. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:1291 / 1299
页数:9
相关论文
共 50 条
  • [31] On a non-symmetric problem in electrochemical machining
    Wegert, E
    Oestreich, D
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1997, 20 (10) : 841 - 854
  • [32] HTFETI method for non-symmetric problems
    1600, Civil-Comp Press (111):
  • [33] NON-SYMMETRIC SPHERULITES - NEPHRASTERANIC ACID
    PRASAD, PBV
    PRASAD, ND
    CRYSTAL RESEARCH AND TECHNOLOGY, 1989, 24 (10) : K183 - K186
  • [34] Quantum features of non-symmetric geometries
    Wanas, MI
    Kahil, ME
    GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (12) : 1921 - 1929
  • [35] MEASURES OF BETWEENNESS IN NON-SYMMETRIC NETWORKS
    GOULD, RV
    SOCIAL NETWORKS, 1987, 9 (03) : 277 - 282
  • [36] A numerical study of non-symmetric joints
    Berger, Edward
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 415 - 423
  • [37] Barnett relaxation in non-symmetric grains
    Kolasi, Erald
    Weingartner, Joseph C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : 1222 - 1229
  • [38] Non-symmetric stapling of native peptides
    Chen, Fa-Jie
    Lin, Wanzhen
    Chen, Fen-Er
    NATURE REVIEWS CHEMISTRY, 2024, 8 (05) : 304 - 318
  • [39] On the non-symmetric semidefinite Procrustes problem
    Baghel, Mohit Kumar
    Gillis, Nicolas
    Sharma, Punit
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 648 : 133 - 159
  • [40] Equilibrium analysis of non-symmetric CNNs
    Arik, S
    Tavsanoglu, V
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1996, 24 (03) : 269 - 274