Non-symmetric polarization

被引:1
|
作者
Defant, Andreas
Schluters, Sunke
机构
关键词
Polarization; Polynomials; Multilinear forms; Schur multipliers; MULTIPLIERS;
D O I
10.1016/j.jmaa.2016.05.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P be an m-homogeneous polynomial in n-complex variables x(1),..., x(n). Clearly, P has a unique representation in the form P(x) = Sigma(1 <= j1 <=...<= jm <= n) c(j(1),...,j(m)) x(j1)...x(jm), and the m-form L-P(x((1)),...,x((m)))= Sigma(1 <= j1 <=...<= jm <= n) c(j(1),...,j(m)) x(j1)((1))...x(jm)((m)), satisfies L-P(x,...,x) = P(x) for every x is an element of C-n. We show that, although L-P in general is non-symmetric, for a large class of reasonable norms parallel to center dot parallel to on C-n the norm of L-P on (C-n, parallel to center dot parallel to)(m) up to a logarithmic term (c log n)(m2) can be estimated by the norm of P on (C-n parallel to center dot parallel to); here c >= 1 denotes a universal constant. Moreover, for the l(p)-norms parallel to center dot parallel to(p), 1 <= p < 2 the logarithmic term in the number n of variables is even superfluous. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:1291 / 1299
页数:9
相关论文
共 50 条
  • [21] Non-symmetric Kellogg nuclei
    Gantmakher, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1936, 10 : 3 - 5
  • [22] Properties of the non-symmetric matrix
    Wen, Rui-Ping
    Ren, Fu-Jiao
    Advances in Matrix Theory and Applications, 2006, : 120 - 122
  • [23] Influences of flexoelectric polarization on easy direction and director distribution of non-symmetric NLC cell
    Guan, Rong-Hua
    ADVANCES IN LIQUID CRYSTALS, 2010, 428-429 : 251 - 254
  • [24] Novel binding regioselectivity in the interpenetration of a non-symmetric axle into a non-symmetric pillar[5]arene wheel
    Shu, Xiaoyan
    Chen, Wei
    Hou, Dabin
    Meng, Qingbin
    Zheng, Renlin
    Li, Chunju
    CHEMICAL COMMUNICATIONS, 2014, 50 (37) : 4820 - 4823
  • [25] Symmetric And Non-Symmetric Muonic Helium Atoms Studies
    Mohammadi, S.
    FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS (FINUSTAR 3), 2011, 1377 : 398 - 401
  • [26] Symmetric and non-symmetric chiral liquid crystal dimers
    Donaldson, T.
    Staesche, H.
    Lu, Z. B.
    Henderson, P. A.
    Achard, M. F.
    Imrie, C. T.
    LIQUID CRYSTALS, 2010, 37 (08) : 1097 - 1110
  • [27] Soliton dynamics in symmetric and non-symmetric complex potentials
    Kominis, Yannis
    OPTICS COMMUNICATIONS, 2015, 334 : 265 - 272
  • [28] Symmetric Jack polynomials from non-symmetric theory
    T. H. Baker
    P. J. Forrester
    Annals of Combinatorics, 1999, 3 (2-4) : 159 - 170
  • [29] CONJOINED TWINS - SYMMETRIC AND NON-SYMMETRIC (PARASITIC) FORMS
    WERNER, JP
    BOHM, N
    HELWIG, H
    SCHROTER, W
    KLINISCHE PADIATRIE, 1978, 190 (04): : 365 - 371
  • [30] GEOMETRY WITH A NON-SYMMETRIC FUNDAMENTAL TENSOR
    BURMAN, RR
    MATRIX AND TENSOR QUARTERLY, 1975, 26 (01): : 1 - 10