NILPOTENT SUBSPACES AND NILPOTENT ORBITS

被引:0
|
作者
Panyushev, Dmitri, I [1 ]
Yakimova, Oksana S. [2 ]
机构
[1] RAS, IITP, Bolshoi Karetnyi Per 19, Moscow 127051, Russia
[2] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
关键词
orbital variety; induced orbit; polarisation; Dynkin ideal; IDEALS; VARIETY;
D O I
10.1017/S1446788718000071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semisimple complex algebraic group with Lie algebra g. For a nilpotent G-orbit O subset of g, let d(O) denote the maximal dimension of a subspace V subset of g that is contained in the closure of O. In this note, we prove that d(O )<= 1/2 dim O and this upper bound is attained if and only if O is a Richardson orbit. Furthermore, if V is B-stable and dim V = 1/2dim O, then V is the nilradical of a polarisation of O. Every nilpotent orbit closure has a distinguished B-stable subspace constructed via an sI(2) -triple, which is called the Dynkin ideal. We then characterise the nilpotent orbits O such that the Dynkin ideal (1) has the minimal dimension among all B-stable subspaces c such that c boolean AND O is dense in c, or (2) is the only B-stable subspace c such that c boolean AND O is dense in c.
引用
收藏
页码:104 / 126
页数:23
相关论文
共 50 条
  • [41] Regions in the dominant chamber and nilpotent orbits
    Panyushev, DI
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01): : 1 - 6
  • [42] Fano contact manifolds and nilpotent orbits
    Beauville, A
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (04) : 566 - 583
  • [43] Representatives for unipotent classes and nilpotent orbits
    Korhonen, Mikko
    Stewart, David, I
    Thomas, Adam R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1641 - 1661
  • [44] Spherical nilpotent orbits in positive characteristic
    Fowler, Russell
    Roehrle, Gerhard
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2008, 237 (02) : 241 - 286
  • [45] Birational geometry and deformations of nilpotent orbits
    Namikawa, Yoshinori
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 143 (02) : 375 - 405
  • [46] Homogeneous twistor spaces and nilpotent orbits
    Swann, A
    [J]. MATHEMATISCHE ANNALEN, 1999, 313 (01) : 161 - 188
  • [47] Invariant subspaces of nilpotent linear operators, I
    Ringel, Claus Michael
    Schmidmeier, Markus
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 614 : 1 - 52
  • [48] On linear subspaces of nilpotent elements in a Lie algebra
    Meshulam, R
    Radwan, N
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 279 (1-3) : 195 - 199
  • [49] Hyperinvariant subspaces of locally nilpotent linear transformations
    Astuti, Pudji
    Wimmer, Harald K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 469 - 474
  • [50] Conditioned invariant subspaces and the geometry of nilpotent matrices
    Helmke, U
    Trumpf, J
    [J]. NEW DIRECTIONS AND APPLICATIONS IN CONTROL THEORY, 2005, 321 : 123 - 163