Hyperinvariant subspaces of locally nilpotent linear transformations

被引:0
|
作者
Astuti, Pudji [1 ]
Wimmer, Harald K. [2 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Bandung 40132, Indonesia
[2] Univ Wurzburg, Math Inst, D-97074 Wurzburg, Germany
关键词
Locally nilpotent operators; Hyperinvariant subspaces; Invariant subspaces; Cyclic subspaces; Endomorphism ring; Exponent; Height;
D O I
10.1016/j.laa.2015.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subspace X of a vector space over a field K is hyperinvariant with respect to an endomorphism f of V if it is invariant for all endomorphisms of V that commute with f. We assume that f is locally nilpotent, that is, every x is an element of V is annihilated by some power of f, and that V is an infinite direct sum of f-cyclic subspaces. In this note we describe the lattice of hyperinvariant subspaces of V. We extend a result of Fillmore, Herrero and Longstaff (1977) [2] to infinite dimensional spaces. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:469 / 474
页数:6
相关论文
共 50 条