Space lidar observations constrain longwave cloud feedback

被引:16
|
作者
de Guelis, Thibault Vaillant [1 ,2 ]
Chepfer, Helene [1 ]
Guzman, Rodrigo [1 ]
Bonazzola, Marine [1 ]
Winker, David M. [3 ]
Noel, Vincent [4 ]
机构
[1] Sorbonne Univ, UPMC Univ Paris 06, Ecole Polytech, LMD IPSL,CNRS, Palaiseau, France
[2] Univ Clermont Auvergne, CNRS, LaMP OPGC, Clermont Ferrand, France
[3] NASA, Langley Res Ctr, Hampton, VA 23665 USA
[4] Univ Toulouse, Lab Aerol, CNRS, Toulouse, France
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
CLIMATE-CHANGE; RADIATION; MODEL;
D O I
10.1038/s41598-018-34943-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some of the most challenging questions in atmospheric science relate to how clouds will respond as the climate warms. On centennial scales, the response of clouds could either weaken or enhance the warming due to greenhouse gas emissions. Here we use space lidar observations to quantify changes in cloud altitude, cover, and opacity over the oceans between 2008 and 2014, together with a climate model with a lidar simulator to also simulate these changes in the present-day climate and in a future, warmer climate. We find that the longwave cloud altitude feedback, found to be robustly positive in simulations since the early climate models and backed up by physical explanations, is not the dominant longwave feedback term in the observations, although it is in the model we have used. These results suggest that the enhanced longwave warming due to clouds might be overestimated in climate models. These results highlight the importance of developing a long-term active sensor satellite record to reduce uncertainties in cloud feedbacks and prediction of future climate.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] NOCTILUCENT CLOUD OBSERVATIONS OVER GREENLAND BY A RAYLEIGH LIDAR
    THAYER, JP
    NIELSON, N
    JACOBSEN, J
    GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (21) : 2961 - 2964
  • [22] Mid-latitude noctilucent cloud observations by lidar
    vonCossart, G
    Hoffmann, P
    vonZahn, U
    Keckhut, P
    Hauchecorne, A
    GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (21) : 2919 - 2922
  • [23] LIDAR OBSERVATIONS OF A STRATOSPHERIC DUST CLOUD LAYER IN TROPICS
    FEGLEY, RW
    ELLIS, HT
    GEOPHYSICAL RESEARCH LETTERS, 1975, 2 (04) : 139 - 141
  • [24] Mid-Latitude noctilucent cloud observations by lidar
    Von Cossart, G.
    Hoffmann, P.
    Von Zahn, U.
    Keckhut, P.
    Hauchecorne, A.
    Geophysical Research Letters, 1996, 23 (21): : 2919 - 2922
  • [25] ARCTIC POLAR STRATOSPHERIC CLOUD OBSERVATIONS BY AIRBORNE LIDAR
    MCCORMICK, MP
    KENT, GS
    HUNT, WH
    OSBORN, MT
    POOLE, LR
    PITTS, MC
    GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (04) : 381 - 383
  • [26] Incorporating EarthCARE observations into a multi-lidar cloud climaterecord: the ATLID (Atmospheric Lidar) cloud climate product
    Feofilov, Artem G. G.
    Chepfer, Helene
    Noel, Vincent
    Szczap, Frederic
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (13) : 3363 - 3390
  • [27] Role of Longwave Cloud-Radiation Feedback in the Simulation of the Madden-Julian Oscillation
    Kim, Daehyun
    Ahn, Min-Seop
    Kang, In-Sik
    Del Genio, Anthony D.
    JOURNAL OF CLIMATE, 2015, 28 (17) : 6979 - 6994
  • [28] Cloud parametrization for space-borne lidar applications
    Pal, SR
    Donovan, DP
    Blanchet, JP
    Laroque, M
    OPTICAL REMOTE SENSING OF THE ATMOSPHERE AND CLOUDS, 1998, 3501 : 542 - 550
  • [29] Longwave radiative effect of the cloud-aerosol transition zone based on CERES observations
    Jahani, Babak
    Andersen, Hendrik
    Calbo, Josep
    Gonzalez, Josep-Abel
    Cermak, Jan
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (02) : 1483 - 1494
  • [30] Lidar Observations of Mt. Pinatubo Cloud Over Hefei
    周军
    胡欢陵
    龚知本
    ChineseScienceBulletin, 1993, (16) : 1373 - 1376