Space lidar observations constrain longwave cloud feedback

被引:16
|
作者
de Guelis, Thibault Vaillant [1 ,2 ]
Chepfer, Helene [1 ]
Guzman, Rodrigo [1 ]
Bonazzola, Marine [1 ]
Winker, David M. [3 ]
Noel, Vincent [4 ]
机构
[1] Sorbonne Univ, UPMC Univ Paris 06, Ecole Polytech, LMD IPSL,CNRS, Palaiseau, France
[2] Univ Clermont Auvergne, CNRS, LaMP OPGC, Clermont Ferrand, France
[3] NASA, Langley Res Ctr, Hampton, VA 23665 USA
[4] Univ Toulouse, Lab Aerol, CNRS, Toulouse, France
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
CLIMATE-CHANGE; RADIATION; MODEL;
D O I
10.1038/s41598-018-34943-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some of the most challenging questions in atmospheric science relate to how clouds will respond as the climate warms. On centennial scales, the response of clouds could either weaken or enhance the warming due to greenhouse gas emissions. Here we use space lidar observations to quantify changes in cloud altitude, cover, and opacity over the oceans between 2008 and 2014, together with a climate model with a lidar simulator to also simulate these changes in the present-day climate and in a future, warmer climate. We find that the longwave cloud altitude feedback, found to be robustly positive in simulations since the early climate models and backed up by physical explanations, is not the dominant longwave feedback term in the observations, although it is in the model we have used. These results suggest that the enhanced longwave warming due to clouds might be overestimated in climate models. These results highlight the importance of developing a long-term active sensor satellite record to reduce uncertainties in cloud feedbacks and prediction of future climate.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] METEOSAT OBSERVATIONS OF LONGWAVE CLOUD-RADIATIVE FORCING FOR APRIL 1985
    SCHMETZ, J
    MHITA, M
    VANDEBERG, L
    JOURNAL OF CLIMATE, 1990, 3 (07) : 784 - 791
  • [12] Raman lidar observations of cloud liquid water
    Rizi, V
    Iarlori, M
    Rocci, G
    Visconti, G
    APPLIED OPTICS, 2004, 43 (35) : 6440 - 6453
  • [13] Relationship between cloud base height retrieved from lidar and downward longwave irradiance
    Yamada, Kyohei
    Hayasaka, Tadahiro
    Sugimoto, Nobuo
    REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION IV, 2012, 8523
  • [14] Evaluation of Downward Surface Longwave Flux Estimates Using Meteosat Cloud Observations
    Lopes, Francisco M.
    Dutra, Emanuel
    Trigo, Isabel F.
    Wild, Martin
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (06)
  • [15] Towards Establishing a Long-Term Cloud Record from Space-Borne Lidar Observations
    Feofilov, Artem
    Chepfer, Helene
    Noel, Vincent
    Hajiaghazadeh-Roodsari, Maryam
    SPACE-BASED LIDAR REMOTE SENSING TECHNIQUES AND EMERGING TECHNOLOGIES, LIDAR 2023, 2024, : 57 - 72
  • [16] Longwave Cloud Radiative Forcing as Determined from Nimbus-7 Observations
    Ardanuy, Philip E.
    Stowe, Larry L.
    Gruber, Arnold
    Weiss, Mitchell
    Long, Craig S.
    JOURNAL OF CLIMATE, 1989, 2 (08) : 766 - 799
  • [17] Cloud layer statistics from spaceborne Lidar observations
    Berthier, S
    Chazette, P
    Pelon, J
    Couvert, P
    Pain, T
    SIXTH INTERNATIONAL SYMPOSIUM ON TROPOSPHERIC PROFILING: NEEDS AND TECHNOLOGIES, 2003, : 282 - 284
  • [18] LIDAR OBSERVATIONS OF CLOUD DISPERSION UNDER ACTIVE INFLUENCE
    POLOVINA, IP
    SAMOKHVALOV, IV
    SHAMANAEV, VS
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1975, 11 (07): : 760 - 764
  • [19] Mid-latitude noctilucent cloud observations by lidar
    Institut für Atmospharenphysik, Universität Rostock, Germany
    不详
    不详
    不详
    Geophys Res Lett, 21 (2919-2922):
  • [20] Prospects for long-term lidar cloud observations
    Platt, CMR
    OPTICAL REMOTE SENSING FOR INDUSTRY AND ENVIRONMENTAL MONITORING, 1998, 3504 : 187 - 195