Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data

被引:26
|
作者
Sadeghi, Morteza [1 ]
Ebtehaj, Ardeshir [1 ]
Crow, Wade T. [2 ]
Gao, Lun [1 ]
Purdy, Adam J. [3 ]
Fisher, Joshua B. [3 ]
Jones, Scott B. [4 ]
Babaeian, Ebrahim [5 ]
Tuller, Markus [5 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
[4] Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA
[5] Univ Arizona, Dept Environm Sci, Tucson, AZ USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Remote sensing; Satellite observations; Hydrologic models; L-BAND; PRECIPITATION; EVAPOTRANSPIRATION; RESOLUTION; RETRIEVALS; IRRIGATION; EQUATION; RAINFALL; MODELS; SPACE;
D O I
10.1175/JHM-D-19-0150.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is essential for quantification of depletion and recharge of groundwater resources. Net water flux cannot be directly measured, and its estimates as a residual of individual surface flux components often suffer from mass conservation errors due to accumulated systematic biases of individual fluxes. Here, for the first time, we provide direct estimates of global NWF based on near-surface satellite soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. We apply a recently developed analytical model derived via inversion of the linearized Richards' equation. The model is parsimonious, yet yields unbiased estimates of long-term cumulative NWF that is generally well correlated with the terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE) satellite. In addition, in conjunction with precipitation and evapotranspiration retrievals, the resultant NWF estimates provide a new means for retrieving global infiltration and runoff from satellite observations. However, the efficacy of the proposed approach over densely vegetated regions is questionable, due to the uncertainty of the satellite soil moisture retrievals and the lack of explicit parameterization of transpiration by deeply rooted plants in the proposed model. Future research is needed to advance this modeling paradigm to explicitly account for plant transpiration.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 50 条
  • [41] Validation of downscaled 1-km SMOS and SMAP soil moisture data in 2010-2021
    Fang, Bin
    Lakshmi, Venkataraman
    Zhang, Runze
    [J]. VADOSE ZONE JOURNAL, 2024, 23 (02)
  • [42] Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land)
    Al-Yaari, A.
    Wigneron, J. -P.
    Ducharne, A.
    Kerr, Y. H.
    Wagner, W.
    De lannoy, G.
    Reichle, R.
    Al Bitar, A.
    Dorigo, W.
    Richaume, P.
    Mialon, A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 152 : 614 - 626
  • [43] Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land)
    Al-Yaari, A.
    Wigneron, J.-P.
    Ducharne, A.
    Kerr, Y.H.
    Wagner, W.
    De Lannoy, G.
    Reichle, R.
    Al Bitar, A.
    Dorigo, W.
    Richaume, P.
    Mialon, A.
    [J]. Remote Sensing of Environment, 2014, 152 : 614 - 626
  • [44] Evaluation of Soil Moisture Variability in Poland from SMOS Satellite Observations
    Usowicz, Boguslaw
    Lipiec, Jerzy
    Lukowski, Mateusz
    [J]. REMOTE SENSING, 2019, 11 (11)
  • [45] Interpretation of Soil Moisture Using CYGNSS and SMAP Satellite Data in Henan Province
    Hu, SHengwei
    Zhang, Shuangcheng
    Wu, Huilin
    Ma, Hongli
    Feng, Yuxuan
    Guo, Qinyu
    [J]. CHINA SATELLITE NAVIGATION CONFERENCE PROCEEDINGS, CSNC 2022, VOL I, 2022, 908 : 13 - 23
  • [46] Spatial Evaluation and Assimilation of SMAP, SMOS, and ASCAT Satellite Soil Moisture Products Over Africa Using Statistical Techniques
    Mousa, B. G.
    Shu, Hong
    [J]. EARTH AND SPACE SCIENCE, 2020, 7 (01)
  • [47] Assimilation of SMOS soil moisture and brightness temperature products into a land surface model
    Lievens, H.
    De Lannoy, G. J. M.
    Al Bitar, A.
    Drusch, M.
    Dumedah, G.
    Franssen, H. -J. Hendricks
    Kerr, Y. H.
    Tomer, S. K.
    Martens, B.
    Merlin, O.
    Pan, M.
    Roundy, J. K.
    Vereecken, H.
    Walker, J. P.
    Wood, E. F.
    Verhoest, N. E. C.
    Pauwels, V. R. N.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 180 : 292 - 304
  • [48] Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application
    Srivastava, Prashant K.
    Han, Dawei
    Ramirez, Miguel Rico
    Islam, Tanvir
    [J]. WATER RESOURCES MANAGEMENT, 2013, 27 (08) : 3127 - 3144
  • [49] Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model
    De Lannoy, Gabrielle J. M.
    Reichle, Rolf H.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (12) : 4895 - 4911
  • [50] Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application
    Prashant K. Srivastava
    Dawei Han
    Miguel Rico Ramirez
    Tanvir Islam
    [J]. Water Resources Management, 2013, 27 : 3127 - 3144