The fourth-order nonlinear Schrodinger limit for quantum Zakharov system

被引:11
|
作者
Fang, Yung-Fu [1 ]
Lin, Chi-Kun [2 ]
Segata, Jun-Ichi [3 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, 1 Dasyue Rd, Tainan 70101, Taiwan
[2] Xian Jiaotong Liverpool Univ, SIP, Dept Math Sci, Suzhou 215123, Jiansu, Peoples R China
[3] Tohoku Univ, Math Inst, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan
来源
关键词
Quantum Zakharov system; Convergence of solution; GLOBAL WELL-POSEDNESS; BLOW-UP SOLUTIONS; LANGMUIR TURBULENCE; EQUATIONS; DIMENSION-2; REGULARITY; EXISTENCE; ENERGY;
D O I
10.1007/s00033-016-0740-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the quantum Zakharov system. We prove that when the ionic speed of sound goes to infinity, the solution to the fourth-order Schrodinger part of the quantum Zakharov system converges to the solution to quantum modified nonlinear Schrodinger equation.
引用
收藏
页数:27
相关论文
共 50 条