Matrix Integrable Fourth-Order Nonlinear Schrodinger Equations and Their Exact Soliton Solutions

被引:43
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
RIEMANN-HILBERT APPROACH; ROGUE WAVES;
D O I
10.1088/0256-307X/39/10/100201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct matrix integrable fourth-order nonlinear Schrodinger equations through reducing the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding reflectionless Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and formulate their soliton solutions via those reflectionless Riemann-Hilbert problems. Soliton solutions are computed for three illustrative examples of scalar and two-component integrable fourth-order nonlinear Schrodinger equations.
引用
收藏
页数:6
相关论文
共 50 条