DAGON: A 3D Maxwell-Bloch Code

被引:0
|
作者
Oliva, E. [1 ]
Cotelo, M. [1 ]
Escudero, J. C. [1 ]
Vicens, S. [1 ]
Gonzalez, A. [1 ]
Velarde, P. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Ind, Inst Fus Nucl, Madrid, Spain
来源
X-RAY LASERS 2016 | 2018年 / 202卷
关键词
X-RAY LASER;
D O I
10.1007/978-3-319-73025-7_4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High Order Harmonics are a powerful tool to unveil the inner dynamics of plasmas by studying their propagation. However, being the plasma an inhomogeneous medium, it is desirable to have a 3D description of the interaction of HOH with the ions. The 3D Maxwell-Bloch code DAGON, developed at the Instituto de Fusion Nuclear will allow to study the full spatio-temporal structure of amplified HOH.
引用
收藏
页码:25 / 28
页数:4
相关论文
共 50 条
  • [1] DAGON: a 3D Maxwell-Bloch code
    Oliva, Eduardo
    Cotelo, Manuel
    Carlos Escudero, Juan
    Gonzalez-Fernandez, Agustin
    Sanchis, Alberto
    Vera, Javier
    Vicens, Sergio
    Velarde, Pedro
    [J]. X-RAY LASERS AND COHERENT X-RAY SOURCES: DEVELOPMENT AND APPLICATIONS, 2017, 10243
  • [2] On fractional differential systems of 3D Maxwell-Bloch type
    Ivan, Gheorghe
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (04)
  • [3] TESTING THE PAINLEVE PROPERTY OF THE MAXWELL-BLOCH AND REDUCED MAXWELL-BLOCH EQUATIONS
    GOLDSTEIN, PP
    [J]. PHYSICS LETTERS A, 1987, 121 (01) : 11 - 14
  • [4] MAXWELL-BLOCH TURBULENCE
    IKEDA, K
    OTSUKA, K
    MATSUMOTO, K
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1989, (99): : 295 - 324
  • [6] Maxwell-Bloch system on a lattice
    Bogoliubov, N.M.
    Rybin, A.V.
    Bullough, R.K.
    Timonen, J.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 1995, 52 (02):
  • [7] Simulations of 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    [J]. NUSOD '07: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2007, : 5 - +
  • [8] MAXWELL-BLOCH SYSTEM ON A LATTICE
    BOGOLIUBOV, NM
    RYBIN, AV
    BULLOUGH, RK
    TIMONEN, J
    [J]. PHYSICAL REVIEW A, 1995, 52 (02): : 1487 - 1493
  • [9] Numerical solutions to 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2008, 40 (5-6) : 447 - 453
  • [10] Global existence for Maxwell-Bloch systems
    Dumas, T
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) : 484 - 509