DAGON: A 3D Maxwell-Bloch Code

被引:0
|
作者
Oliva, E. [1 ]
Cotelo, M. [1 ]
Escudero, J. C. [1 ]
Vicens, S. [1 ]
Gonzalez, A. [1 ]
Velarde, P. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Ind, Inst Fus Nucl, Madrid, Spain
来源
X-RAY LASERS 2016 | 2018年 / 202卷
关键词
X-RAY LASER;
D O I
10.1007/978-3-319-73025-7_4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High Order Harmonics are a powerful tool to unveil the inner dynamics of plasmas by studying their propagation. However, being the plasma an inhomogeneous medium, it is desirable to have a 3D description of the interaction of HOH with the ions. The 3D Maxwell-Bloch code DAGON, developed at the Instituto de Fusion Nuclear will allow to study the full spatio-temporal structure of amplified HOH.
引用
下载
收藏
页码:25 / 28
页数:4
相关论文
共 50 条
  • [11] Global existence for Maxwell-Bloch systems
    Dumas, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) : 484 - 509
  • [12] SOLITONS OF UNSHORTENED MAXWELL-BLOCH EQUATIONS
    ANDREEV, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1995, 108 (03): : 796 - 806
  • [13] ROUTES TO CHAOS IN THE MAXWELL-BLOCH EQUATIONS
    MILONNI, PW
    ACKERHALT, JR
    SHIH, ML
    OPTICS COMMUNICATIONS, 1985, 53 (02) : 133 - 136
  • [14] Rational Integrability of the Maxwell-Bloch System
    Qu, Jingjia
    Yang, Shuangling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (13):
  • [15] COMPLEX SOLUTIONS FOR MAXWELL-BLOCH EQUATIONS
    ANDREEV, VA
    KVANTOVAYA ELEKTRONIKA, 1983, 10 (10): : 2045 - 2048
  • [16] ON THE MAXWELL-BLOCH EQUATIONS WITH ONE CONTROL
    PUTA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (07): : 679 - 683
  • [17] Solitons of nontruncated Maxwell-Bloch equations
    Andreev, AV
    Berendakov, VV
    COHERENT PHENOMENA AND AMPLIFICATION WITHOUT INVERSION - ICONO '95, 1996, 2798 : 112 - 120
  • [18] Soliton interaction for Maxwell-Bloch system
    Zuo, Da-Wei
    Zhang, Gui-Fang
    OPTIK, 2020, 221
  • [19] Due credit for Maxwell-Bloch equations
    McNeil, Brian
    NATURE PHOTONICS, 2015, 9 (04) : 207 - 207
  • [20] First integrals of the Maxwell-Bloch system
    Huang, Kaiyin
    Shi, Shaoyun
    Li, Wenlei
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (01) : 3 - 11