Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions

被引:32
|
作者
Lees, A. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
Knauer, J. P. [1 ]
Gopalaswamy, V. [1 ,2 ]
Patel, D. [1 ,2 ]
Woo, K. M. [1 ]
Anderson, K. S. [1 ]
Campbell, E. M. [1 ]
Cao, D. [1 ]
Carroll-Nellenback, J. [1 ]
Epstein, R. [1 ]
Forrest, C. [1 ]
Goncharov, V. N. [1 ]
Harding, D. R. [1 ]
Hu, S. X. [1 ]
Igumenshchev, I. V. [1 ]
Janezic, R. T. [1 ]
Mannion, O. M. [1 ,3 ]
Radha, P. B. [1 ]
Regan, S. P. [1 ]
Shvydky, A. [1 ]
Shah, R. C. [1 ]
Shmayda, W. T. [1 ]
Stoeckl, C. [1 ]
Theobald, W. [1 ]
Thomas, C. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 E River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; DIRECT-DRIVE; IGNITION;
D O I
10.1103/PhysRevLett.127.105001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the l = 1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and l = 1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2 x 10(14) fusion reactions.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions
    Walsh, C. A.
    McGlinchey, K.
    Tong, J. K.
    Appelbe, B. D.
    Crilly, A.
    Zhang, M. F.
    Chittenden, J. P.
    PHYSICS OF PLASMAS, 2019, 26 (02)
  • [32] Proton core imaging of the nuclear burn in inertial confinement fusion implosions
    DeCiantis, JL
    Séguin, FH
    Frenje, JA
    Berube, V
    Canavan, MJ
    Chen, CD
    Kurebayashi, S
    Li, CK
    Rygg, JR
    Schwartz, BE
    Petrasso, RD
    Delettrez, JA
    Regan, SP
    Smalyuk, VA
    Knauer, JP
    Marshall, FJ
    Meyerhofer, DD
    Roberts, S
    Sangster, TC
    Stoeckl, C
    Mikaelian, K
    Park, HS
    Robey, HF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04):
  • [33] Observation of interspecies ion separation in inertial-confinement-fusion implosions
    Hsu, S. C.
    Joshi, T. R.
    Hakel, P.
    Vold, E. L.
    Schmitt, M. J.
    Hoffman, N. M.
    Rauenzahn, R. M.
    Kagan, G.
    Tang, X. -Z.
    Mancini, R. C.
    Kim, Y.
    Herrmann, H. W.
    EPL, 2016, 115 (06)
  • [34] Hot electron preheat in hydrodynamically scaled direct-drive inertial confinement fusion implosions on the NIF and OMEGA
    Rosenberg, M. J.
    Solodov, A. A.
    Stoeckl, C.
    Hohenberger, M.
    Bahukutumbi, R.
    Theobald, W.
    Edgell, D.
    Filkins, T.
    Betti, R.
    Marshall, F. J.
    Shah, R. C.
    Turnbull, D. P.
    Christopherson, A. R.
    Lemos, N.
    Tubman, E.
    Regan, S. P.
    PHYSICS OF PLASMAS, 2023, 30 (07)
  • [35] Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions
    Woo, K. M.
    Betti, R.
    Shvarts, D.
    Bose, A.
    Patel, D.
    Yan, R.
    Chang, P. -Y.
    Mannion, O. M.
    Epstein, R.
    Delettrez, J. A.
    Charissis, M.
    Anderson, K. S.
    Radha, P. B.
    Shvydky, A.
    Igumenshchev, I. V.
    Gopalaswamy, V.
    Christopherson, A. R.
    Sanz, J.
    Aluie, H.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [36] Collection of solid and gaseous samples to diagnose inertial confinement fusion implosions
    Stoyer, M. A.
    Velsko, C. A.
    Spears, B. K.
    Hicks, D. G.
    Hudson, G. B.
    Sangster, T. C.
    Freeman, C. G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02):
  • [37] Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
    Cuneo, M. E.
    Herrmann, M. C.
    Sinars, D. B.
    Slutz, S. A.
    Stygar, W. A.
    Vesey, R. A.
    Sefkow, A. B.
    Rochau, G. A.
    Chandler, G. A.
    Bailey, J. E.
    Porter, J. L.
    McBride, R. D.
    Rovang, D. C.
    Rovang, D. C.
    Mazarakis, M. G.
    Yu, E. P.
    Lamppa, D. C.
    Peterson, K. J.
    Nakhleh, C.
    Hansen, S. B.
    Lopez, A. J.
    Savage, M. E.
    Jennings, C. A.
    Martin, M. R.
    Lemke, R. W.
    Atherton, B. W.
    Smith, I. C.
    Rambo, P. K.
    Jones, M.
    Lopez, M. R.
    Christenson, P. J.
    Sweeney, M. A.
    Jones, B.
    McPherson, L. A.
    Harding, E.
    Gomez, M. R.
    Knapp, P. F.
    Awe, T. J.
    Leeper, R. J.
    Ruiz, C. L.
    Cooper, G. W.
    Hahn, K. D.
    McKenney, J.
    Owen, A. C.
    McKee, G. R.
    Leifeste, G. T.
    Ampleford, D. J.
    Waisman, E. M.
    Harvey-Thompson, A.
    Kaye, R. J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) : 3222 - 3245
  • [38] Time resolved ablator areal density during peak fusion burn on inertial confinement fusion implosions
    Meaney, K. D.
    Hoffman, N. M.
    Kim, Y.
    Geppert-Kleinrath, H.
    Herrmann, H. W.
    Cerjan, C.
    Landen, O. L.
    Appelbe, B.
    PHYSICS OF PLASMAS, 2021, 28 (03)
  • [39] Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures
    Amendt, Peter
    Landen, O. L.
    Robey, H. F.
    PHYSICAL REVIEW LETTERS, 2010, 105 (11)
  • [40] Fuel-shell mix and yield degradation in kinetic shock-driven inertial confinement fusion implosions
    Sio, H.
    Larroche, O.
    Bose, A.
    Atzeni, S.
    Frenje, J. A.
    Kabadi, N. V.
    Gatu Johnson, M.
    Li, C. K.
    Glebov, V.
    Stoeckl, C.
    Lahmann, B.
    Adrian, P. J.
    Regan, S. P.
    Birkel, A.
    Seguin, F. H.
    Petrasso, R. D.
    PHYSICS OF PLASMAS, 2022, 29 (07)