Hot electron preheat in hydrodynamically scaled direct-drive inertial confinement fusion implosions on the NIF and OMEGA

被引:4
|
作者
Rosenberg, M. J. [1 ]
Solodov, A. A. [1 ]
Stoeckl, C. [1 ]
Hohenberger, M. [2 ]
Bahukutumbi, R. [1 ]
Theobald, W. [1 ]
Edgell, D. [1 ]
Filkins, T. [1 ]
Betti, R. [1 ]
Marshall, F. J. [1 ]
Shah, R. C. [1 ]
Turnbull, D. P. [1 ]
Christopherson, A. R. [2 ]
Lemos, N. [2 ]
Tubman, E. [2 ]
Regan, S. P. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
POLAR-DIRECT-DRIVE; BEAM ENERGY-TRANSFER; LASER; NONUNIFORMITY; GENERATION; MITIGATION; TRANSPORT; STATE;
D O I
10.1063/5.0152191
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hot electron preheat has been quantified in warm, directly driven inertial confinement fusion implosions on OMEGA and the National Ignition Facility (NIF), to support hydrodynamic scaling studies. These CH-shell experiments were designed to be hydrodynamically equivalent, spanning a factor of 40 in laser energy and a factor of 3.4 in spatial and temporal scales, while preserving the incident laser intensity of 10(15) W/cm(2). Experiments with similarly low levels of beam smoothing on OMEGA and NIF show a similar fraction (similar to 0.2%) of laser energy deposited as hot electron preheat in the unablated shell on both OMEGA and NIF and similar preheat per mass (similar to 2 kJ/mg), despite the NIF experiments generating a factor of three more hot electrons (similar to 1.5% of laser energy) than on OMEGA (similar to 0.5% of laser energy). This is plausibly explained by more absorption of hot electron energy in the ablated CH plasma on NIF due to larger areal density, as well as a smaller solid angle of the imploding shell as viewed from the hot electron generating region due to the hot electrons being produced at a larger standoff distance in lower-density regions by stimulated Raman scattering, in contrast to in higher-density regions by two-plasmon decay on OMEGA. The results indicate that for warm implosions at intensities of around 10(15) W/cm(2), hydrodynamic equivalence is not violated by hot electron preheat, though for cryogenic implosions, the reduced attenuation of hot electrons in deuterium-tritium plasma will have to be considered.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Direct-drive inertial confinement fusion implosions on omega
    Regan, SP
    Sangster, TC
    Meyerhofer, DD
    Anderson, K
    Betti, R
    Boehly, TR
    Collins, TJB
    Craxton, RS
    Delettrez, JA
    Epstein, R
    Gotchev, OV
    Glebov, VY
    Goncharov, VN
    Harding, DR
    Jaanimagi, PA
    Knauer, JP
    Loucks, SJ
    Lund, LD
    Marozas, JA
    Marshall, FJ
    McCrory, RL
    McKenty, PW
    Morse, SFB
    Radha, PB
    Seka, W
    Skupsky, S
    Sawada, H
    Smalyuk, VA
    Soures, JM
    Stoeckl, C
    Yaakobi, B
    Frenje, JA
    Li, CK
    Petrasso, RD
    Séguin, FH
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 298 (1-2) : 227 - 233
  • [2] Direct-Drive Inertial Confinement Fusion Implosions on Omega
    S. P. Regan
    T. C. Sangster
    D. D. Meyerhofer
    K. Anderson
    R. Betti
    T. R. Boehly
    T. J. B. Collins
    R. S. Craxton
    J. A. Delettrez
    R. Epstein
    O. V. Gotchev
    V. Yu. Glebov
    V. N. Goncharov
    D. R. Harding
    P. A. Jaanimagi
    J. P. Knauer
    S. J. Loucks
    L. D. Lund
    J. A. Marozas
    F. J. Marshall
    R. L. Mccrory
    P. W. Mckenty
    S. F. B. Morse
    P. B. Radha
    W. Seka
    S. Skupsky
    H. Sawada
    V. A. Smalyuk
    J. M. Soures
    C. Stoeckl
    B. Yaakobi
    J. A. Frenje
    C. K. Li
    R. D. Petrasso
    F. H. SÉguin
    Astrophysics and Space Science, 2005, 298 : 227 - 233
  • [3] Direct Measurements of DT Fuel Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion
    Christopherson, A. R.
    Betti, R.
    Forrest, C. J.
    Howard, J.
    Theobald, W.
    Delettrez, J. A.
    Rosenberg, M. J.
    Solodov, A. A.
    Stoeckl, C.
    Patel, D.
    Gopalaswamy, V
    Cao, D.
    Peebles, J. L.
    Edgell, D. H.
    Seka, W.
    Epstein, R.
    Wei, M. S.
    Johnson, M. Gatu
    Simpson, R.
    Regan, S. P.
    Campbell, E. M.
    PHYSICAL REVIEW LETTERS, 2021, 127 (05)
  • [4] An empirical target discharging model relevant to hot-electron preheat in direct-drive implosions on OMEGA
    Sinenian, N.
    Manuel, M. J-E
    Frenje, J. A.
    Seguin, F. H.
    Li, C. K.
    Petrasso, R. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (04)
  • [5] Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA
    Cao, D.
    Boehly, T. R.
    Gregor, M. C.
    Polsin, D. N.
    Davis, A. K.
    Radha, P. B.
    Regan, S. P.
    Goncharov, V. N.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [6] Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments
    Rosenberg, M. J.
    Solodov, A. A.
    Myatt, J. F.
    Seka, W.
    Michel, P.
    Hohenberger, M.
    Short, R. W.
    Epstein, R.
    Regan, S. P.
    Campbell, E. M.
    Chapman, T.
    Goyon, C.
    Ralph, J. E.
    Barrios, M. A.
    Moody, J. D.
    Bates, J. W.
    PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [7] Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion
    Gopalaswamy, V.
    Williams, C. A.
    Betti, R.
    Patel, D.
    Knauer, J. P.
    Lees, A.
    Cao, D.
    Campbell, E. M.
    Farmakis, P.
    Ejaz, R.
    Anderson, K. S.
    Epstein, R.
    Carroll-Nellenbeck, J.
    Igumenshchev, I. V.
    Marozas, J. A.
    Radha, P. B.
    Solodov, A. A.
    Thomas, C. A.
    Woo, K. M.
    Collins, T. J. B.
    Hu, S. X.
    Scullin, W.
    Turnbull, D.
    Goncharov, V. N.
    Churnetski, K.
    Forrest, C. J.
    Glebov, V. Yu.
    Heuer, P. V.
    Mcclow, H.
    Shah, R. C.
    Stoeckl, C.
    Theobald, W.
    Edgell, D. H.
    Ivancic, S.
    Rosenberg, M. J.
    Regan, S. P.
    Bredesen, D.
    Fella, C.
    Koch, M.
    Janezic, R. T.
    Bonino, M. J.
    Harding, D. R.
    Bauer, K. A.
    Sampat, S.
    Waxer, L. J.
    Labuzeta, M.
    Morse, S. F. B.
    Gatu-Johnson, M.
    Petrasso, R. D.
    Frenje, J. A.
    NATURE PHYSICS, 2024, 20 (05) : 751 - 757
  • [8] Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
    Michel, D. T.
    Hu, S. X.
    Davis, A. K.
    Glebov, V. Yu.
    Goncharov, V. N.
    Igumenshchev, I. V.
    Radha, P. B.
    Stoeckl, C.
    Froula, D. H.
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [9] Laser pulse shape designer for direct-drive inertial confinement fusion implosions
    Tao, Tao
    Zheng, Guannan
    Jia, Qing
    Yan, Rui
    Zheng, Jian
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [10] Study of direct-drive capsule implosions in inertial confinement fusion with proton radiography
    Li, C. K.
    Seguin, F. H.
    Frenje, J. A.
    Manuel, M.
    Petrasso, R. D.
    Smalyuk, V. A.
    Betti, R.
    Delettrez, J.
    Knauer, J. P.
    Marshall, F.
    Meyerhofer, D. D.
    Shvarts, D.
    Stoeckl, C.
    Theobald, W.
    Rygg, J. R.
    Landen, O. L.
    Town, R. P. J.
    Amendt, P. A.
    Back, C. A.
    Kilkenny, J. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (01)