Hot electron preheat in hydrodynamically scaled direct-drive inertial confinement fusion implosions on the NIF and OMEGA

被引:4
|
作者
Rosenberg, M. J. [1 ]
Solodov, A. A. [1 ]
Stoeckl, C. [1 ]
Hohenberger, M. [2 ]
Bahukutumbi, R. [1 ]
Theobald, W. [1 ]
Edgell, D. [1 ]
Filkins, T. [1 ]
Betti, R. [1 ]
Marshall, F. J. [1 ]
Shah, R. C. [1 ]
Turnbull, D. P. [1 ]
Christopherson, A. R. [2 ]
Lemos, N. [2 ]
Tubman, E. [2 ]
Regan, S. P. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
POLAR-DIRECT-DRIVE; BEAM ENERGY-TRANSFER; LASER; NONUNIFORMITY; GENERATION; MITIGATION; TRANSPORT; STATE;
D O I
10.1063/5.0152191
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hot electron preheat has been quantified in warm, directly driven inertial confinement fusion implosions on OMEGA and the National Ignition Facility (NIF), to support hydrodynamic scaling studies. These CH-shell experiments were designed to be hydrodynamically equivalent, spanning a factor of 40 in laser energy and a factor of 3.4 in spatial and temporal scales, while preserving the incident laser intensity of 10(15) W/cm(2). Experiments with similarly low levels of beam smoothing on OMEGA and NIF show a similar fraction (similar to 0.2%) of laser energy deposited as hot electron preheat in the unablated shell on both OMEGA and NIF and similar preheat per mass (similar to 2 kJ/mg), despite the NIF experiments generating a factor of three more hot electrons (similar to 1.5% of laser energy) than on OMEGA (similar to 0.5% of laser energy). This is plausibly explained by more absorption of hot electron energy in the ablated CH plasma on NIF due to larger areal density, as well as a smaller solid angle of the imploding shell as viewed from the hot electron generating region due to the hot electrons being produced at a larger standoff distance in lower-density regions by stimulated Raman scattering, in contrast to in higher-density regions by two-plasmon decay on OMEGA. The results indicate that for warm implosions at intensities of around 10(15) W/cm(2), hydrodynamic equivalence is not violated by hot electron preheat, though for cryogenic implosions, the reduced attenuation of hot electrons in deuterium-tritium plasma will have to be considered.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Time history prediction of direct-drive implosions on the Omega facility
    Laffite, S.
    Bourgade, J. L.
    Caillaud, T.
    Delettrez, J. A.
    Frenje, J. A.
    Girard, F.
    Glebov, V. Yu.
    Joshi, T.
    Landoas, O.
    Legay, G.
    Lemaire, S.
    Mancini, R. C.
    Marshall, F. J.
    Masse, L.
    Masson-Laborde, P. E.
    Michel, D. T.
    Philippe, F.
    Reverdin, C.
    Seka, W.
    Tassin, V.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [42] Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA
    Stoeckl, C.
    Epstein, R.
    Betti, R.
    Bittle, W.
    Delettrez, J. A.
    Forrest, C. J.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Igumenshchev, I. V.
    Jacobs-Perkins, D. W.
    Janezic, R. T.
    Kelly, J. H.
    Kosc, T. Z.
    McCrory, R. L.
    Michel, D. T.
    Mileham, C.
    McKenty, P. W.
    Marshall, F. J.
    Morse, S. F. B.
    Regan, S. P.
    Radha, P. B.
    Rice, B.
    Sangster, T. C.
    Shoup, M. J., III
    Shmayda, W. T.
    Sorce, C.
    Theobald, W.
    Ulreich, J.
    Wittman, M. D.
    Meyerhofer, D. D.
    Frenje, J. A.
    Johnson, M. Gatu
    Petrasso, R. D.
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [43] Core performance and mix in direct-drive spherical implosions on Omega
    Stoeckl, C
    Delettrez, JA
    Epstein, R
    Glebov, VY
    Keck, RL
    McCrory, RL
    McKenty, PW
    Marshall, FJ
    Meyerhofer, DD
    Radha, PB
    Regan, SP
    Roberts, S
    Seka, W
    Skupsky, S
    Smalyyuk, VA
    Sorce, C
    Soures, JM
    Town, RPJ
    Yaakobi , B
    Frenje, JA
    Li, CK
    Petrasso, RD
    Seguin, FH
    Fletcher, K
    Padalino, S
    Freeman, C
    Izumi, N
    Lerche, R
    Phillips, TW
    Sangster, TC
    ADVANCED DIAGNOSTICS FOR MAGNETIC AND INERTIAL FUSION, 2002, : 19 - 26
  • [44] Core conditions for alpha heating attained in direct-drive inertial confinement fusion
    Bose, A.
    Woo, K. M.
    Betti, R.
    Campbell, E. M.
    Mangino, D.
    Christopherson, A. R.
    McCrory, R. L.
    Nora, R.
    Regan, S. P.
    Goncharov, V. N.
    Sangster, T. C.
    Forrest, C. J.
    Frenje, J.
    Johnson, M. Gatu
    Glebov, V. Yu
    Knauer, J. P.
    Marshall, F. J.
    Stoeckl, C.
    Theobald, W.
    PHYSICAL REVIEW E, 2016, 94 (01):
  • [45] The effect of optical prepulse on direct-drive inertial confinement fusion target performance
    Boehly, TR
    Fisher, Y
    Meyerhofer, DD
    Seka, W
    Soures, JM
    Bradley, DK
    PHYSICS OF PLASMAS, 2001, 8 (01) : 231 - 237
  • [46] Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics
    R. L. McCrory
    D. D. Meyerhofer
    S. J. Loucks
    S. Skupsky
    R. Betti
    T. R. Boehly
    T. J.B. Collins
    R. S. Craxton
    J. A. Delettrez
    D. H. Edgell
    R. Epstein
    K. A. Fletcher
    C. Freeman
    J. A. Frenje
    V. Yu. Glebov
    V. N. Goncharov
    D. R. Harding
    I. V. Igumenshchev
    R. L. Keck
    J. D. Kilkenny
    J. P. Knauer
    C. K. Li
    J. Marciante
    J. A. Marozas
    F. J. Marshall
    A. V. Maximov
    P. W. McKenty
    S. F.B. Morse
    J. Myatt
    S. Padalino
    R. D. Petrasso
    P. B. Radha
    S. P. Regan
    T. C. Sangster
    F. H. Séguin
    W. Seka
    V. A. Smalyuk
    J. M. Soures
    C. Stoeckl
    B. Yaakobi
    J. D. Zuegel
    The European Physical Journal D, 2007, 44 : 233 - 238
  • [47] Comparison of beam-smoothing methods for direct-drive inertial confinement fusion
    Rothenberg, JE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (07) : 1664 - 1671
  • [48] Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion
    Ceurvorst, L.
    Betti, R.
    Casner, A.
    Gopalaswamy, V
    Bose, A.
    Hu, S. X.
    Campbell, E. M.
    Regan, S. P.
    McCoy, C. A.
    Karasik, M.
    Peebles, J.
    Tabak, M.
    Theobald, W.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [49] Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
    Smalyuk, V. A.
    Betti, R.
    Delettrez, J. A.
    Glebov, V. Yu.
    Meyerhofer, D. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Sanz, J.
    Seka, W.
    Stoeckl, C.
    Yaakobi, B.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [50] Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics
    McCrory, R. L.
    Meyerhofer, D. D.
    Loucks, S. J.
    Skupsky, S.
    Betti, R.
    Boehly, T. R.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Fletcher, K. A.
    Freeman, C.
    Frenje, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Igumenshchev, I. V.
    Keck, R. L.
    Kilkenny, J. D.
    Knauer, J. P.
    Li, C. K.
    Marciante, J.
    Marozas, J. A.
    Marshall, F. J.
    Maximov, A. V.
    McKenty, P. W.
    Morse, S. F. B.
    Myatt, J.
    Padalino, S.
    Petrasso, R. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seguin, F. H.
    Seka, W.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeckl, C.
    Yaakobi, B.
    Zuegel, J. D.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 59 - 65