Continuous Blooming of Convex Polyhedra

被引:7
|
作者
Demaine, Erik D. [1 ]
Demaine, Martin L. [1 ]
Hart, Vi
Iacono, John [2 ]
Langerman, Stefan [3 ]
O'Rourke, Joseph [4 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] NYU, Polytech Inst, Dept Comp Sci & Engn, Brooklyn, NY USA
[3] Univ Libre Bruxelles, Dept Informat, Maitre Rech FRS FNRS, Brussels, Belgium
[4] Smith Coll, Dept Comp Sci, Northampton, MA 01063 USA
基金
美国国家科学基金会;
关键词
Unfolding; Folding; Collision-free motion;
D O I
10.1007/s00373-011-1024-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 50 条
  • [31] On Hamiltonian tetrahedralizations of convex polyhedra
    Chin, Francis
    Ding, Qing-Huai
    Wang, Cao An
    [J]. Operations Research and Its Applications, 2005, 5 : 206 - 216
  • [32] Linear Wavefronts of Convex Polyhedra
    Makeev V.V.
    Makeev I.V.
    [J]. Journal of Mathematical Sciences, 2016, 212 (5) : 550 - 551
  • [33] Ununfoldable polyhedra with convex faces
    Bern, M
    Demaine, ED
    Eppstein, D
    Kuo, E
    Mantler, A
    Snoeyink, J
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 24 (02): : 51 - 62
  • [34] RADON PARTITIONS AND CONVEX POLYHEDRA
    ECKHOFF, J
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 277 (SEP30): : 120 - 129
  • [35] A LIPSCHITZIAN CHARACTERIZATION OF CONVEX POLYHEDRA
    WALKUP, DW
    WETS, RJB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (01) : 167 - &
  • [36] On canonical representations of convex polyhedra
    Avis, D
    Fukuda, K
    Picozzi, S
    [J]. MATHEMATICAL SOFTWARE, PROCEEDINGS, 2002, : 350 - 360
  • [37] LIFTING PROJECTIONS OF CONVEX POLYHEDRA
    WALKUP, DW
    WETS, RJB
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (02) : 465 - &
  • [38] ON SOME CHARACTERIZATIONS OF CONVEX POLYHEDRA
    Myroshnychenko, Sergii
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2023, 149 (01): : 239 - 249
  • [39] Globally and locally convex polyhedra
    Ionin, VK
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (03) : 473 - 477
  • [40] Rational bases for convex polyhedra
    Wachspress, E.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 1953 - 1956