Continuous Blooming of Convex Polyhedra

被引:7
|
作者
Demaine, Erik D. [1 ]
Demaine, Martin L. [1 ]
Hart, Vi
Iacono, John [2 ]
Langerman, Stefan [3 ]
O'Rourke, Joseph [4 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] NYU, Polytech Inst, Dept Comp Sci & Engn, Brooklyn, NY USA
[3] Univ Libre Bruxelles, Dept Informat, Maitre Rech FRS FNRS, Brussels, Belgium
[4] Smith Coll, Dept Comp Sci, Northampton, MA 01063 USA
基金
美国国家科学基金会;
关键词
Unfolding; Folding; Collision-free motion;
D O I
10.1007/s00373-011-1024-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 50 条
  • [21] Dihedral angles of convex polyhedra
    Schlenker, JM
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (03) : 409 - 417
  • [22] Glassy dynamics of convex polyhedra
    Tasios, Nikos
    Gantapara, Anjan Prasad
    Dijkstra, Marjolein
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (22):
  • [23] CONVEX POLYHEDRA WITH INDEFINITE METRICS
    GAIDALOVICH, VG
    SOKOLOV, DD
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1986, (05): : 5 - 11
  • [24] Globally and locally convex polyhedra
    V. K. Ionin
    [J]. Siberian Mathematical Journal, 1999, 40 : 473 - 477
  • [25] The foldings of a square to convex polyhedra
    Alexander, R
    Dyson, H
    O'Rourke, J
    [J]. DISCRETE AND COMPUTATIONAL GEOMETRY, 2002, 2866 : 38 - 50
  • [26] Convex polyhedra with parquet faces
    A. V. Timofeenko
    [J]. Doklady Mathematics, 2009, 80 : 720 - 723
  • [27] Learning Convex Polyhedra With Margin
    Gottlieb, Lee-Ad
    Kaufman, Eran
    Kontorovich, Aryeh
    Nivasch, Gabriel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1976 - 1984
  • [28] Accelerated scattering of convex polyhedra
    Voytekhovsky, Yury L.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : 423 - 425
  • [29] ON SOME CHARACTERIZATIONS OF CONVEX POLYHEDRA
    Myroshnychenko, Sergii
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2023, 149 (01): : 239 - 249
  • [30] A LIPSCHITZIAN CHARACTERIZATION OF CONVEX POLYHEDRA
    WALKUP, DW
    WETS, RJB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (01) : 167 - &