Continuous Blooming of Convex Polyhedra

被引:7
|
作者
Demaine, Erik D. [1 ]
Demaine, Martin L. [1 ]
Hart, Vi
Iacono, John [2 ]
Langerman, Stefan [3 ]
O'Rourke, Joseph [4 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] NYU, Polytech Inst, Dept Comp Sci & Engn, Brooklyn, NY USA
[3] Univ Libre Bruxelles, Dept Informat, Maitre Rech FRS FNRS, Brussels, Belgium
[4] Smith Coll, Dept Comp Sci, Northampton, MA 01063 USA
基金
美国国家科学基金会;
关键词
Unfolding; Folding; Collision-free motion;
D O I
10.1007/s00373-011-1024-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 50 条
  • [1] Continuous Blooming of Convex Polyhedra
    Erik D. Demaine
    Martin L. Demaine
    Vi Hart
    John Iacono
    Stefan Langerman
    Joseph O’Rourke
    [J]. Graphs and Combinatorics, 2011, 27 : 363 - 376
  • [2] Interactive continuous collision detection for non-convex polyhedra
    Zhang, Xinyu
    Lee, Minkyoung
    Kim, Young J.
    [J]. VISUAL COMPUTER, 2006, 22 (9-11): : 749 - 760
  • [3] Interactive continuous collision detection for non-convex polyhedra
    Xinyu Zhang
    Minkyoung Lee
    Young J. Kim
    [J]. The Visual Computer, 2006, 22 : 749 - 760
  • [4] Convex polyhedra
    Ruane, P. N.
    [J]. MATHEMATICAL GAZETTE, 2006, 90 (519): : 557 - 558
  • [5] A CHARACTERIZATION OF CONVEX HYPERBOLIC POLYHEDRA AND OF CONVEX POLYHEDRA INSCRIBED IN THE SPHERE
    HODGSON, CD
    RIVIN, I
    SMITH, WD
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (02): : 246 - 251
  • [6] MINIMIZATION OF A CONVEX FUNCTION ON A CONVEX POLYHEDRA
    AUSLENDER, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (18): : 871 - 874
  • [7] Injective Convex Polyhedra
    Maël Pavón
    [J]. Discrete & Computational Geometry, 2016, 56 : 592 - 630
  • [8] ON THE ENUMERATION OF CONVEX POLYHEDRA
    TUTTE, WT
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (02) : 105 - 126
  • [9] ADJACENCY ON CONVEX POLYHEDRA
    MURTY, KG
    [J]. SIAM REVIEW, 1971, 13 (03) : 377 - &
  • [10] Injective Convex Polyhedra
    Pavon, Mael
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (03) : 592 - 630