A Polynomial Zero Attracting Affine Projection Algorithm for Sparse System Identification

被引:2
|
作者
Li, Pengfei [1 ,2 ,3 ]
Zhao, Haiquan [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Key Lab Magnet Suspens Technol & Maglev Vehicle, Minist Educ, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Sichuan, Peoples R China
[3] Southwest Jiaotong Univ, Sch Transportat & Logist, Chengdu 610031, Sichuan, Peoples R China
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 24期
基金
美国国家科学基金会;
关键词
sparse system identification; affine projection algorithm; polynomial; zero attracting;
D O I
10.1016/j.ifacol.2019.12.427
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A polynomial zero attracting affine projection algorithm is prosed in this work for sparse system identification. The existing zero attracting algorithms based on affine projection algorithm for sparse system identification, consider an objective function which is a combination of an l(2)-norm and an approximation of l(0)-norm. The difference between these algorithms is the approximation of the l(0)-norm. In order to further improve the zero attraction capability of sparse adaptive algorithms based on affine projection algorithm, a polynomial is used to approximate the l(0)-norm. Simulation results verify that the proposed algorithm is effective for sparse system identification.
引用
收藏
页码:308 / 311
页数:4
相关论文
共 50 条
  • [21] A Zero-Attracting Sparse Lncosh Adaptive Algorithm
    Salman, Mohammad Shukri
    ElSayed, Fahmi
    Rashdan, Mostafa
    Youssef, Ahmed
    [J]. 2020 IEEE 40TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2020, : 565 - 568
  • [22] STABILITY AND MSE ANALYSES OF AFFINE PROJECTION ALGORITHMS FOR SPARSE SYSTEM IDENTIFICATION
    Lima, Markus V. S.
    Sobron, Iker
    Martins, Wallace A.
    Diniz, Paulo S. R.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [23] Two dimensional zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Hocanin, Aykut
    Kukrer, Osman
    Salman, Mohammad Shukri
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [24] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Mohammad N. S. Jahromi
    Mohammad Shukri Salman
    Aykut Hocanin
    Osman Kukrer
    [J]. Signal, Image and Video Processing, 2015, 9 : 1353 - 1356
  • [25] Improved Convergence Model of the Affine Projection Algorithm for System Identification
    Nita, Valentin Adrian
    Dobre, Robert Alexandru
    Ciochina, Silviu
    Paleologu, Constantin
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2017,
  • [26] Pseudo affine projection sign algorithm for robust system identification
    Ban, S. J.
    Kim, S. W.
    [J]. ELECTRONICS LETTERS, 2010, 46 (12) : 865 - U87
  • [27] Robust Time-Varying Parameter Proportionate Affine-Projection-Like Algorithm for Sparse System Identification
    Pucha Song
    Haiquan Zhao
    Xiangping Zeng
    Wei Quan
    Liping Zhao
    [J]. Circuits, Systems, and Signal Processing, 2021, 40 : 3395 - 3416
  • [28] Improved efficient proportionate affine projection algorithm based on l0-norm for sparse system identification
    Zhao, Haiquan
    Yi Yu
    [J]. JOURNAL OF ENGINEERING-JOE, 2014,
  • [29] Robust Time-Varying Parameter Proportionate Affine-Projection-Like Algorithm for Sparse System Identification
    Song, Pucha
    Zhao, Haiquan
    Zeng, Xiangping
    Quan, Wei
    Zhao, Liping
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (07) : 3395 - 3416
  • [30] A Simple Set-Membership Affine Projection Algorithm for Sparse System Modeling
    Yazdanpanah, Hamed
    Diniz, Paulo S. R.
    Lima, Markus V. S.
    [J]. 2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1798 - 1802