Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification

被引:0
|
作者
Mohammad N. S. Jahromi
Mohammad Shukri Salman
Aykut Hocanin
Osman Kukrer
机构
[1] Eastern Mediterranean University,Electrical and Electronics Engineering Department
[2] Mevlana (Rumi) University,Electrical and Electronics Engineering Department
来源
关键词
Adaptive filters; norm; Zero attracting ; Sparse; System identification;
D O I
暂无
中图分类号
学科分类号
摘要
The variable step-size least-mean-square algorithm (VSSLMS) is an enhanced version of the least-mean-square algorithm (LMS) that aims at improving both convergence rate and mean-square error. The VSSLMS algorithm, just like other popular adaptive methods such as recursive least squares and Kalman filter, is not able to exploit the system sparsity. The zero-attracting variable step-size LMS (ZA-VSSLMS) algorithm was proposed to improve the performance of the variable step-size LMS (VSSLMS) algorithm for system identification when the system is sparse. It combines the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell _1}$$\end{document}-norm penalty function with the original cost function of the VSSLMS to exploit the sparsity of the system. In this paper, we present the convergence and stability analysis of the ZA-VSSLMS algorithm. The performance of the ZA-VSSLMS is compared to those of the standard LMS, VSSLMS, and ZA-LMS algorithms in a sparse system identification setting.
引用
收藏
页码:1353 / 1356
页数:3
相关论文
共 50 条
  • [1] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Salman, Mohammad Shukri
    Hocanin, Aykut
    Kukrer, Osman
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (06) : 1353 - 1356
  • [2] A zero-attracting variable step-size LMS algorithm for sparse system identification
    Salman, Mohammad Shukri
    Jahromi, Mohammad N. S.
    Hocanin, Aykut
    Kukrer, Osman
    [J]. 2012 IX INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (BIHTEL), 2012,
  • [3] Two dimensional zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Hocanin, Aykut
    Kukrer, Osman
    Salman, Mohammad Shukri
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [4] Mean-square deviation analysis of the zero-attracting variable step-size LMS algorithm
    Mohammad N. S. Jahromi
    Mohammad Shukri Salman
    Aykut Hocanin
    Osman Kukrer
    [J]. Signal, Image and Video Processing, 2017, 11 : 533 - 540
  • [5] Mean-square deviation analysis of the zero-attracting variable step-size LMS algorithm
    Jahromi, Mohammad N. S.
    Salman, Mohammad Shukri
    Hocanin, Aykut
    Kukrer, Osman
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (03) : 533 - 540
  • [6] Variable step-size weighted zero-attracting sign algorithm
    Chen, Xu
    Ni, Jingen
    [J]. SIGNAL PROCESSING, 2020, 172
  • [7] An Optimized Zero-Attracting LMS Algorithm for the Identification of Sparse System
    Luo, Lei
    Zhu, Wen-Zhao
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 3060 - 3073
  • [8] Adaptive algorithm for sparse system identification: Zero-attracting LMS
    Jin, Jian
    Gu, Yuantao
    Mei, Shunliang
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2010, 50 (10): : 1656 - 1659
  • [9] Robust Variable Step-Size Reweighted Zero-Attracting Least Mean M-Estimate Algorithm for Sparse System Identification
    Wang, Gen
    Zhao, Haiquan
    Song, Pucha
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (06) : 1149 - 1153
  • [10] A Reweighted Zero-Attracting/Repelling LMS Algorithm for Sparse System Identification
    Wei, Ye
    Wang, Zhiyong
    Zhang, Yonggang
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 1128 - 1132