An Optimized Zero-Attracting LMS Algorithm for the Identification of Sparse System

被引:5
|
作者
Luo, Lei [1 ]
Zhu, Wen-Zhao [2 ]
机构
[1] Chongqing Univ, Key Lab Optoelect Technol & Syst, Educ Minist China, Chongqing 400044, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Steady-state; Noise measurement; Standards; Power measurement; Tuning; Cost function; Weight measurement; Sparse system identification; optimized zero-attractor; mean-square deviation; parameter selection rules; performance analysis;
D O I
10.1109/TASLP.2022.3209946
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper introduces an optimized zero-attractor to improve the performance of least mean square (LMS)-based algorithms for the identification of sparse system. Compared with previous LMS-based algorithms for sparse system identification, the performance of the proposed optimized zero-attracting LMS (OZ-LMS) is much less sensitive to the tuning parameters and measurement noise power, and performs much better for sparse system. Comprehensive performance analysis of the mean-square deviation (MSD) of OZ-LMS is derived in detail. Moreover, the parameter selection rules for optimal steady-state MSD are discussed. Simulation results, using white Gaussian noise and speech input signals, show improved performance over existing methods. Furthermore, we show that the numerical results of OZ-LMS agree with the theoretical predictions.
引用
下载
收藏
页码:3060 / 3073
页数:14
相关论文
共 50 条
  • [1] Adaptive algorithm for sparse system identification: Zero-attracting LMS
    Jin, Jian
    Gu, Yuantao
    Mei, Shunliang
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2010, 50 (10): : 1656 - 1659
  • [2] A Reweighted Zero-Attracting/Repelling LMS Algorithm for Sparse System Identification
    Wei, Ye
    Wang, Zhiyong
    Zhang, Yonggang
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 1128 - 1132
  • [3] A zero-attracting variable step-size LMS algorithm for sparse system identification
    Salman, Mohammad Shukri
    Jahromi, Mohammad N. S.
    Hocanin, Aykut
    Kukrer, Osman
    2012 IX INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (BIHTEL), 2012,
  • [4] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Salman, Mohammad Shukri
    Hocanin, Aykut
    Kukrer, Osman
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (06) : 1353 - 1356
  • [5] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Mohammad N. S. Jahromi
    Mohammad Shukri Salman
    Aykut Hocanin
    Osman Kukrer
    Signal, Image and Video Processing, 2015, 9 : 1353 - 1356
  • [6] Two dimensional zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Hocanin, Aykut
    Kukrer, Osman
    Salman, Mohammad Shukri
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [7] Investigations on Sparse System Identification with l0-LMS, Zero-Attracting LMS and Linearized Bregman Iterations
    Gebhard, Andreas
    Lunglmayr, Michael
    Huemer, Mario
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2017, PT II, 2018, 10672 : 161 - 169
  • [8] A Zero-Attracting Mixed Norm LMS For Sparse Acoustic Room System Estimation
    Eleyan, Gulden
    Salman, Mohammad Shukri
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 1307 - 1310
  • [9] A Zero-Attracting Sparse Lncosh Adaptive Algorithm
    Salman, Mohammad Shukri
    ElSayed, Fahmi
    Rashdan, Mostafa
    Youssef, Ahmed
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2020, : 565 - 568
  • [10] Zero-Attracting Kernel Maximum Versoria Criterion Algorithm for Nonlinear Sparse System Identification
    Jain, Sandesh
    Majhi, Sudhan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1546 - 1550