A Speed up Method for Collaborative Filtering with Autoencoders

被引:0
|
作者
Tang, Wen-Zhe [1 ]
Wang, Yi-Lei [1 ]
Wu, Ying-Jie [1 ]
Wang, Xiao-Dong [1 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou, Fujian, Peoples R China
来源
关键词
Recommender System; Neural Network; Auto-encoder;
D O I
10.3233/978-1-61499-722-1-321
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collaborative Filtering(CF) is a widely used technique in Recommender System. With recent development in deep learning, Neural network based CF has gained great attention in recent years, especially auto-encoders. However, the main disadvantage of autoencoder based CF is the problem of the large sparse target. In this paper, we propose a training strategy to tackle this issue, We run experiments on two popular real world datasets MovieLens 1M and MovieLens 10M. Experiments show orders of magnitude speed up while Attaining similar accuracy compare to existing autoencoder based CF method.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [1] Variational Autoencoders for Collaborative Filtering
    Liang, Dawen
    Krishnan, Rahul G.
    Hoffman, Matthew D.
    Jebara, Tony
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 689 - 698
  • [2] Wasserstein autoencoders for collaborative filtering
    Zhang, Xiaofeng
    Zhong, Jingbin
    Liu, Kai
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2793 - 2802
  • [3] Wasserstein autoencoders for collaborative filtering
    Xiaofeng Zhang
    Jingbin Zhong
    Kai Liu
    [J]. Neural Computing and Applications, 2021, 33 : 2793 - 2802
  • [4] Sequential Variational Autoencoders for Collaborative Filtering
    Sachdeva, Noveen
    Manco, Giuseppe
    Ritacco, Ettore
    Pudi, Vikram
    [J]. PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 600 - 608
  • [5] AutoRec: Autoencoders Meet Collaborative Filtering
    Sedhain, Suvash
    Menon, Aditya Krishna
    Sanner, Scott
    Xie, Lexing
    [J]. WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 111 - 112
  • [6] Deep Heterogeneous Autoencoders for Collaborative Filtering
    Li, Tianyu
    Ma, Yukun
    Xu, Jiu
    Stenger, Bjorn
    Liu, Chen
    Hirate, Yu
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1164 - 1169
  • [7] Augmented Variational Autoencoders for Collaborative Filtering with Auxiliary Information
    Lee, Wonsung
    Song, Kyungwoo
    Moon, Il-Chul
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1139 - 1148
  • [8] Collaborative Adversarial Autoencoders: An Effective Collaborative Filtering Model Under the GAN Framework
    Chae, Dong-Kyu
    Shin, Jung Ah
    Kim, Sang-Wook
    [J]. IEEE ACCESS, 2019, 7 : 37650 - 37663
  • [9] VAEGAN: A Collaborative Filtering Framework based on Adversarial Variational Autoencoders
    Yu, Xianwen
    Zhang, Xiaoning
    Cao, Yang
    Xia, Min
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4206 - 4212
  • [10] AutoFM: A hybrid collaborative filtering model with denoising autoencoders and factorization machine
    Yan, Danfeng
    Guo, Zhengkai
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 3017 - 3025