Deep Heterogeneous Autoencoders for Collaborative Filtering

被引:19
|
作者
Li, Tianyu [1 ]
Ma, Yukun [2 ]
Xu, Jiu [1 ]
Stenger, Bjorn [1 ]
Liu, Chen [1 ]
Hirate, Yu [1 ]
机构
[1] Rakuten Inst Technol, Tokyo, Japan
[2] Nanyang Technol Univ, Singapore, Singapore
关键词
Deep Autoencoder; Heterogeneous Data; Shared Representation; Sequential Data Modeling; Collaborative Filtering;
D O I
10.1109/ICDM.2018.00153
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper leverages heterogeneous auxiliary information to address the data sparsity problem of recommender systems. We propose a model that learns a shared feature space from heterogeneous data, such as item descriptions, product tags and online purchase history, to obtain better predictions. Our model consists of autoencoders, not only for numerical and categorical data, but also for sequential data, which enables capturing user tastes, item characteristics and the recent dynamics of user preference. We learn the autoencoder architecture for each data source independently in order to better model their statistical properties. Our evaluation on two MovieLens datasets and an e-commerce dataset shows that mean average precision and recall improve over state-of-the-art methods.
引用
收藏
页码:1164 / 1169
页数:6
相关论文
共 50 条
  • [1] Variational Autoencoders for Collaborative Filtering
    Liang, Dawen
    Krishnan, Rahul G.
    Hoffman, Matthew D.
    Jebara, Tony
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 689 - 698
  • [2] Wasserstein autoencoders for collaborative filtering
    Zhang, Xiaofeng
    Zhong, Jingbin
    Liu, Kai
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2793 - 2802
  • [3] Wasserstein autoencoders for collaborative filtering
    Xiaofeng Zhang
    Jingbin Zhong
    Kai Liu
    [J]. Neural Computing and Applications, 2021, 33 : 2793 - 2802
  • [4] AutoRec: Autoencoders Meet Collaborative Filtering
    Sedhain, Suvash
    Menon, Aditya Krishna
    Sanner, Scott
    Xie, Lexing
    [J]. WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 111 - 112
  • [5] Sequential Variational Autoencoders for Collaborative Filtering
    Sachdeva, Noveen
    Manco, Giuseppe
    Ritacco, Ettore
    Pudi, Vikram
    [J]. PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 600 - 608
  • [6] A Speed up Method for Collaborative Filtering with Autoencoders
    Tang, Wen-Zhe
    Wang, Yi-Lei
    Wu, Ying-Jie
    Wang, Xiao-Dong
    [J]. FUZZY SYSTEMS AND DATA MINING II, 2016, 293 : 321 - 326
  • [7] Two-step hybrid collaborative filtering using deep variational Bayesian autoencoders
    Nahta, Ravi
    Meena, Yogesh Kumar
    Gopalani, Dinesh
    Chauhan, Ganpat Singh
    [J]. INFORMATION SCIENCES, 2021, 562 : 136 - 154
  • [8] Augmented Variational Autoencoders for Collaborative Filtering with Auxiliary Information
    Lee, Wonsung
    Song, Kyungwoo
    Moon, Il-Chul
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1139 - 1148
  • [9] Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks
    Shi, Chuan
    Han, Xiaotian
    Song, Li
    Wang, Xiao
    Wang, Senzhang
    Du, Junping
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (04) : 1413 - 1425
  • [10] Collaborative Adversarial Autoencoders: An Effective Collaborative Filtering Model Under the GAN Framework
    Chae, Dong-Kyu
    Shin, Jung Ah
    Kim, Sang-Wook
    [J]. IEEE ACCESS, 2019, 7 : 37650 - 37663