AutoRec: Autoencoders Meet Collaborative Filtering

被引:749
|
作者
Sedhain, Suvash [1 ,2 ]
Menon, Aditya Krishna [1 ,2 ]
Sanner, Scott [1 ,2 ]
Xie, Lexing [1 ,2 ]
机构
[1] NICTA, Sydney, NSW, Australia
[2] Australian Natl Univ, Canberra, ACT 0200, Australia
关键词
Recommender Systems; Collaborative Filtering; Autoencoders;
D O I
10.1145/2740908.2742726
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes AutoRec, a novel autoencoder framework for collaborative filtering (CF). Empirically, AutoRec's compact and efficiently trainable model outperforms state-of-the-art CF techniques (biased matrix factorization, RBMCF and LLORMA) on the Movielens and Netflix datasets.
引用
收藏
页码:111 / 112
页数:2
相关论文
共 50 条
  • [1] Variational Autoencoders for Collaborative Filtering
    Liang, Dawen
    Krishnan, Rahul G.
    Hoffman, Matthew D.
    Jebara, Tony
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 689 - 698
  • [2] Wasserstein autoencoders for collaborative filtering
    Zhang, Xiaofeng
    Zhong, Jingbin
    Liu, Kai
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2793 - 2802
  • [3] Wasserstein autoencoders for collaborative filtering
    Xiaofeng Zhang
    Jingbin Zhong
    Kai Liu
    [J]. Neural Computing and Applications, 2021, 33 : 2793 - 2802
  • [4] A Recommendation System Framework to Generalize AutoRec and Neural Collaborative Filtering
    Raziperchikolaei, Ramin
    Chung, Young-joo
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1162 - 1167
  • [5] Sequential Variational Autoencoders for Collaborative Filtering
    Sachdeva, Noveen
    Manco, Giuseppe
    Ritacco, Ettore
    Pudi, Vikram
    [J]. PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 600 - 608
  • [6] Deep Heterogeneous Autoencoders for Collaborative Filtering
    Li, Tianyu
    Ma, Yukun
    Xu, Jiu
    Stenger, Bjorn
    Liu, Chen
    Hirate, Yu
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1164 - 1169
  • [7] A Speed up Method for Collaborative Filtering with Autoencoders
    Tang, Wen-Zhe
    Wang, Yi-Lei
    Wu, Ying-Jie
    Wang, Xiao-Dong
    [J]. FUZZY SYSTEMS AND DATA MINING II, 2016, 293 : 321 - 326
  • [8] Augmented Variational Autoencoders for Collaborative Filtering with Auxiliary Information
    Lee, Wonsung
    Song, Kyungwoo
    Moon, Il-Chul
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1139 - 1148
  • [9] Collaborative Adversarial Autoencoders: An Effective Collaborative Filtering Model Under the GAN Framework
    Chae, Dong-Kyu
    Shin, Jung Ah
    Kim, Sang-Wook
    [J]. IEEE ACCESS, 2019, 7 : 37650 - 37663
  • [10] VAEGAN: A Collaborative Filtering Framework based on Adversarial Variational Autoencoders
    Yu, Xianwen
    Zhang, Xiaoning
    Cao, Yang
    Xia, Min
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4206 - 4212