Data-driven predictions of the Lorenz system

被引:30
|
作者
Dubois, Pierre [1 ]
Gomez, Thomas [1 ]
Planckaert, Laurent [1 ]
Perret, Laurent [2 ]
机构
[1] Univ Lille, Arts & Metiers Inst Technol, UMR LMFL Lab Mecan Fluides Lille Kampe Feriet 901, Cent Lille,CNRS,ONERA, F-59000 Lille, France
[2] LHEEA UMR CNRS 6598, Cent Nantes, Nantes, France
关键词
Data-driven modeling; Data assimilation; Chaotic system; Neural networks; MULTISTEP; NETWORKS; CHAOS;
D O I
10.1016/j.physd.2020.132495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the use of a data-driven method to model the dynamics of the chaotic Lorenz system. An architecture based on a recurrent neural network with long and short term dependencies predicts multiple time steps ahead the position and velocity of a particle using a sequence of past states as input. To account for modeling errors and make a continuous forecast, a dense artificial neural network assimilates online data to detect and update wrong predictions such as non-relevant switchings between lobes. The data-driven strategy leads to good prediction scores and does not require statistics of errors to be known, thus providing significant benefits compared to a simple Kalman filter update. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Data-driven predictions in the science of science
    Clauset, Aaron
    Larremore, Daniel B.
    Sinatra, Roberta
    [J]. SCIENCE, 2017, 355 (6324) : 477 - 480
  • [2] Data-driven predictions of damage and failure in textile composites
    Kheng, Eugene R.
    D'Mello, Royan J.
    Waas, Anthony M.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [3] Data-driven predictions of potential Leishmania vectors in the Americas
    Vadmal, Gowri
    Glidden, Caroline
    Han, Barbara
    Carvalho, Bruno
    Castellanos, Adrian
    Mordecai, Erin
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2023, 17 (02):
  • [4] Data-driven global weather predictions at high resolutions
    Taylor, John A.
    Larraondo, Pablo
    de Supinski, Bronis R.
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2022, 36 (02): : 130 - 140
  • [5] A data-driven paradigm to develop and tune data-driven realtime system
    Wabiko, Y
    Nishikawa, H
    [J]. PDPTA'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, 2001, : 350 - 356
  • [6] Assessment of Roughness Characterization Methods for Data-Driven Predictions
    Yang, Jiasheng
    Stroh, Alexander
    Lee, Sangseung
    Bagheri, Shervin
    Frohnapfel, Bettina
    Forooghi, Pourya
    [J]. FLOW TURBULENCE AND COMBUSTION, 2024, 113 (02) : 275 - 292
  • [7] A data-driven approach for building energy benchmarking using the Lorenz curve
    Chen, Yibo
    Tan, Hongwei
    Berardi, Umberto
    [J]. ENERGY AND BUILDINGS, 2018, 169 : 319 - 331
  • [8] Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty
    Edeling, W. N.
    Iaccarino, G.
    Cinnella, P.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2018, 100 (03) : 593 - 616
  • [9] Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty
    W. N. Edeling
    G. Iaccarino
    P. Cinnella
    [J]. Flow, Turbulence and Combustion, 2018, 100 : 593 - 616
  • [10] Notes on data-driven system approaches
    Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
    不详
    [J]. Zidonghua Xuebao Acta Auto. Sin., 2009, 6 (668-675):