Data-driven predictions of the Lorenz system

被引:30
|
作者
Dubois, Pierre [1 ]
Gomez, Thomas [1 ]
Planckaert, Laurent [1 ]
Perret, Laurent [2 ]
机构
[1] Univ Lille, Arts & Metiers Inst Technol, UMR LMFL Lab Mecan Fluides Lille Kampe Feriet 901, Cent Lille,CNRS,ONERA, F-59000 Lille, France
[2] LHEEA UMR CNRS 6598, Cent Nantes, Nantes, France
关键词
Data-driven modeling; Data assimilation; Chaotic system; Neural networks; MULTISTEP; NETWORKS; CHAOS;
D O I
10.1016/j.physd.2020.132495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the use of a data-driven method to model the dynamics of the chaotic Lorenz system. An architecture based on a recurrent neural network with long and short term dependencies predicts multiple time steps ahead the position and velocity of a particle using a sequence of past states as input. To account for modeling errors and make a continuous forecast, a dense artificial neural network assimilates online data to detect and update wrong predictions such as non-relevant switchings between lobes. The data-driven strategy leads to good prediction scores and does not require statistics of errors to be known, thus providing significant benefits compared to a simple Kalman filter update. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Implementation of a Data-driven Workflow Management System
    Haddar, Nahla
    Tmar, Mohamed
    Gargouri, Faiez
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2012) / 10TH IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2012), 2012, : 111 - 118
  • [32] Data-Driven Techniques in Computing System Management
    Li, Tao
    Zeng, Chunqiu
    Jiang, Yexi
    Zhou, Wubai
    Tang, Liang
    Liu, Zheng
    Huang, Yue
    [J]. ACM COMPUTING SURVEYS, 2017, 50 (03)
  • [33] Towards online data-driven prognostics system
    Elattar, Hatem M.
    Elminir, Hamdy K.
    Riad, A. M.
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2018, 4 (04) : 271 - 282
  • [34] Data-Driven Control of an Inverted Pendulum System
    Abu, Yizhak
    Hirshberg, Tom
    Bronstein, Alex M.
    [J]. 2023 PROCEEDINGS OF THE CONFERENCE ON CONTROL AND ITS APPLICATIONS, CT, 2023, : 80 - 86
  • [35] DATA-DRIVEN
    Lev-Ram, Michal
    [J]. FORTUNE, 2016, 174 (05) : 76 - 81
  • [36] Data-driven plant-model mismatch quantification in closed-loop system based on output predictions
    Shi, Yimiao
    Xu, Xiaodong
    Dubljevic, Stevan
    [J]. AICHE JOURNAL, 2024, 70 (07)
  • [37] A Data-Driven Approach for Continuous Adherence Predictions in Sleep Apnea Therapy Management
    Araujo, Matheus
    Kazaglis, Louis
    Iber, Conrad
    Srivastava, Jaideep
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2716 - 2725
  • [38] Data-driven Aircraft Trajectory Predictions using Ensemble Meta-Estimators
    Munoz Hernandez, Andres
    Casado Magana, Enrique J.
    Gracia Berna, Antonio
    [J]. 2018 IEEE/AIAA 37TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2018, : 1311 - 1320
  • [39] Day-ahead aircraft routing with data-driven primary delay predictions
    Birolini, Sebastian
    Jacquillat, Alexandre
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 310 (01) : 379 - 396
  • [40] A Data-driven Approach for Spatio-Temporal Crime Predictions in Smart Cities
    Catlett, Charlie
    Cesario, Eugenio
    Talia, Domenico
    Vinci, Andrea
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2018), 2018, : 17 - 24