Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty

被引:0
|
作者
W. N. Edeling
G. Iaccarino
P. Cinnella
机构
[1] Stanford University,Center for Turbulence Research
[2] Arts et Métiers ParisTech,Laboratoire DynFluid
来源
关键词
RANS modeling; Uncertainty quantification; Bayesian inference; Return to eddy viscosity; Lag model;
D O I
暂无
中图分类号
学科分类号
摘要
For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.
引用
收藏
页码:593 / 616
页数:23
相关论文
共 50 条
  • [1] Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty
    Edeling, W. N.
    Iaccarino, G.
    Cinnella, P.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2018, 100 (03) : 593 - 616
  • [2] A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty
    Agrawal, Atul
    Koutsourelakis, Phaedon-Stelios
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 508
  • [3] Practical framework for data-driven RANS modeling with data augmentation
    Guo, Xianwen
    Xia, Zhenhua
    Chen, Shiyi
    [J]. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37 (12): : 1748 - 1756
  • [4] Practical framework for data-driven RANS modeling with data augmentation
    Xianwen Guo
    Zhenhua Xia
    Shiyi Chen
    [J]. Acta Mechanica Sinica, 2021, 37 : 1748 - 1756
  • [5] Estimating the Uncertainty of Hydrological Predictions through Data-Driven Resampling Techniques
    Sikorska, Anna E.
    Montanari, Alberto
    Koutsoyiannis, Demetris
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2015, 20 (01)
  • [6] Data-driven predictions of the Lorenz system
    Dubois, Pierre
    Gomez, Thomas
    Planckaert, Laurent
    Perret, Laurent
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 408
  • [7] Data-driven predictions in the science of science
    Clauset, Aaron
    Larremore, Daniel B.
    Sinatra, Roberta
    [J]. SCIENCE, 2017, 355 (6324) : 477 - 480
  • [8] Data-driven RANS for simulations of large wind farms
    Iungo, G. V.
    Viola, F.
    Ciri, U.
    Rotea, M. A.
    Leonardi, S.
    [J]. WAKE CONFERENCE 2015, 2015, 625
  • [9] Measurement uncertainty, data quality and data-driven modelling
    Sommer, Klaus-Dieter
    Schuetze, Andreas
    [J]. TM-TECHNISCHES MESSEN, 2024, 91 (09) : 417 - 418
  • [10] Dimensionality reduction for regularization of sparse data-driven RANS simulations
    Piroozmand, Pasha
    Brenner, Oliver
    Jenny, Patrick
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492